People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lozano-Sanchez, Pablo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Polymer Indicator Displacement Assay (PIDA) with Boronic Acid Receptors on Graphene Foam Electrodes for Self-Optimised Impedimetric Lactic Acid Determination
Abstract
Synthetic organic receptor molecules are employed based on boronic acids attached to graphene to provide functionality and selectivity in competitive analyte binding. Here, a new electrochemical sensor concept based on a surface redox polymer indicator displacement (avoiding traditional solution redox indicators) is proposed and demonstrated on graphene foam electrodes. A pyrene-derivatised boronic acid chemo-receptor for lactic acid is adsorbed onto graphene foam and coated with poly-nordihydroguaiaretic acid (poly-NHG) as an electrochemically active polymer indicator. When bound to the boronic acid, poly-NHG remains redox silent. Dynamic displacement with lactic acid results in a concentration-dependent Faradaic current response. Effects of pH and detection methodology (voltammetry, chronoamperometry, and impedance spectroscopy) are investigated. Self-optimised impedimetric sensing based on the interfacial electron transfer resistance is demonstrated. While lactic acid sensing in human serum is possible, the sensor response is lower. Surface-active components from human serum are shown to modify the sensor response without affecting performance. Lactic acid sensing in artificial sweat at pH 4.7 is shown to result in a Langmuirian binding curve with apparent binding constant K = 40 M-1.