Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santana, Antônio Euzébio G.

  • Google
  • 1
  • 8
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione28citations

Places of action

Chart of shared publication
Santos, Ana Caroline Ferreira
1 / 1 shared
Araújo, Orlando R. P. De
1 / 1 shared
Moura, Fabiana A.
1 / 1 shared
Tanaka, Auro A.
1 / 2 shared
Pividori Gurgo, María Isabel
1 / 32 shared
Taboada-Sotomayor, Maria Del Pilar
1 / 1 shared
Goulart, Marília O. F.
1 / 1 shared
Khan, Sabir
1 / 5 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Santos, Ana Caroline Ferreira
  • Araújo, Orlando R. P. De
  • Moura, Fabiana A.
  • Tanaka, Auro A.
  • Pividori Gurgo, María Isabel
  • Taboada-Sotomayor, Maria Del Pilar
  • Goulart, Marília O. F.
  • Khan, Sabir
OrganizationsLocationPeople

article

Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione

  • Santos, Ana Caroline Ferreira
  • Araújo, Orlando R. P. De
  • Moura, Fabiana A.
  • Tanaka, Auro A.
  • Pividori Gurgo, María Isabel
  • Santana, Antônio Euzébio G.
  • Taboada-Sotomayor, Maria Del Pilar
  • Goulart, Marília O. F.
  • Khan, Sabir
Abstract

<p>The present work aims to develop electroanalytical strategies for separating and quantifying one of the most important biothiols, the reduced glutathione (GSH), based on developing and applying a new and selective magnetic molecular imprinted polymer (mag-MIP). This magnetic-supported polymer was synthesized by precipitation, using GSH as a template, having acrylamide as the functional monomer and trimethylolpropane trimethacrylate as a cross-linking agent. These materials' morphological and physical characteristics were investigated by scanning electron microscope, Fourier transform infrared, and vibrating sample magnetometry. Physicochemical parameters, such as adsorption capacity, were obtained and compared with the respective mag-NIP, which are control polymers without the selective cavity. After all characterizations, mag-MIP and mag-NIP were evaluated on magnetic graphite-epoxy composite (m-GEC) electrodes. The characteristics of the obtained sensors were investigated by cyclic voltammetry and differential pulse voltammetry. After optimizing experimental and operational conditions, a linear response for the concentration of GSH, in the range of 1–1400 μmol/L, with low detection and quantification limits of 7 and 20 nmol/L, respectively, were obtained. The GSH levels in mice liver samples were measured by electrochemical and spectrophotometric techniques to compare the method's effectiveness. A high correlation between them and a low relative error of 1.06 % were obtained, indicating the good functionality of the proposed sensor.</p>

Topics
  • nanoparticle
  • polymer
  • composite
  • precipitation
  • cyclic voltammetry
  • pulse voltammetry