Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pombeiro, A. J. L.

  • Google
  • 1
  • 4
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications49citations

Places of action

Chart of shared publication
Anbu, S.
1 / 1 shared
Shaikh Solaiman, N.
1 / 1 shared
Surendranath, Kalpana
1 / 1 shared
Paul, A.
1 / 19 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Anbu, S.
  • Shaikh Solaiman, N.
  • Surendranath, Kalpana
  • Paul, A.
OrganizationsLocationPeople

article

A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications

  • Anbu, S.
  • Pombeiro, A. J. L.
  • Shaikh Solaiman, N.
  • Surendranath, Kalpana
  • Paul, A.
Abstract

Differential chemosensors have emerged as next-generation systems due to their simplicity and favourable responsive properties to produce different signals upon selective binding of various analytes simultaneously. Nevertheless, given their inadequate fluorescence response and laborious synthetic procedures, only a few differential chemosensors have been developed so far. In this work, we have employed a single pot synthesis strategy to establish a new benzimidazole-based Schiff base type fluorogenic chemosensor (DFB) which differentially detects Cu2+ (detection limit (LOD) = 24.4 ± 0.5 nM) and Zn2+ (LOD = 2.18 ± 0.1 nM) through fluorescence “off-on” manner over the library of other metal cations in an aqueous medium. The DFB-derived ‘in situ’ complexes DFB-Cu2+and DFB-Zn2+showed fluorescence revival “on-off” responses toward cyanide (CN−) and bio-relevant pyrophosphate (P2O74--PPi) ions with a significantly low LOD of 9.43 ± 0.2 and 2.9 ± 0.1 nM, respectively, in water. We have demonstrated the phosphate group-specific binding capability of DFB-Zn2+, by testing it with both ssDNA and dsDNA samples which displayed fluorescence “turn-off” response (LOD ∼10-7 M), similar to the PPi binding in an aqueous medium, indicating that it interacts explicitly with the phosphate backbone of DNA. We have also harnessed the DFB as a sequential fluorescent probe to detect Cu2+, Zn2+, CN− and P2O74- ions in human cervical (HeLa) and breast (MCF-7 and MDA-MB-231 (aggressive and invasive)) cancer cell lines. Moreover, we have explored the PPi recognition capability of DFB-Zn2+in the polymerase-chain-reaction (PCR) products where PPi is one of the primary by-products during amplification of DNA.

Topics
  • impedance spectroscopy