People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amatatongchai, Maliwan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Novel dual-sensor for creatinine and 8-hydroxy-2 '-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometrycitations
- 2020Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in foodcitations
- 2019Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determinationcitations
Places of action
Organizations | Location | People |
---|
article
Novel dual-sensor for creatinine and 8-hydroxy-2 '-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometry
Abstract
We present a novel amperometric dual-imprinted sensor for simultaneous determination of creatinine (Cre) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine and serum. The sensor used multiple-pulse amperometric detection in flow injection analysis (MPA-FIA). Copper oxide nanoparticles were coated with the Cre molecularly-imprinted polymer (CuO@MIP), using methacrylic acid as the functional monomer and N, N'-(1,2-dihydroxyethylene) bis-acrylamide as cross-linker. For 8-OHdG sensing, we embedded platinum nanoparticles in reduced graphene oxide and then coated it with guanosine poly-dopamine MIP (PtNPs-rGO@MIP). A carbon paste electrode (CPE) was then formed containing both nanocomposites to give the dual MIP sensor (CuO@MIP and PtNPs-rGO@MIP/CPE). We developed a dual-potential waveform as a function of time, with (Edet.1) (+0.4 V/150 ms) to determine Cre selectively and E-det.2 (+0.6 V/250 ms) to analyze both compounds simultaneously (Cre and 8-OHdG). Subtracting the two signals at 0.6 V and 0.4 V (using a correction factor), respectively, from each other allowed for quantifying 8-OHdG without interference from Cre. The MIP sensor has a linear range of 0.5-150 mu M for creatinine and 0.005-50 mu M for 8-OHdG, with limits of detection in nano-molar level. The proposed method is successfully applied for the simultaneous determination of Cre and 8-OHdG in urine and serum samples.