Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Montenegro, Mdbsm

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements26citations

Places of action

Chart of shared publication
Da Cunha Areias, Mcd
1 / 1 shared
Alves Junior, S.
1 / 1 shared
Amorim, Cg
1 / 2 shared
Vasconcelos, Ws
1 / 1 shared
Silva, Cs
1 / 1 shared
De Almeida Ferraz, Nvd
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Da Cunha Areias, Mcd
  • Alves Junior, S.
  • Amorim, Cg
  • Vasconcelos, Ws
  • Silva, Cs
  • De Almeida Ferraz, Nvd
OrganizationsLocationPeople

article

Gold-copper metal-organic framework nanocomposite as a glassy carbon electrode modifier for the voltammetric detection of glutathione in commercial dietary supplements

  • Montenegro, Mdbsm
  • Da Cunha Areias, Mcd
  • Alves Junior, S.
  • Amorim, Cg
  • Vasconcelos, Ws
  • Silva, Cs
  • De Almeida Ferraz, Nvd
Abstract

An electrochemical sensor based on a gold-copper metal-organic framework immobilized on the surface of glassy carbon electrode has been developed for the electrocatalytic oxidation and determination of glutathione. Gold nanoparticles were incorporated into copper-1,3,5-benzenetricarboxylate and the composition and structure of the resulting nanocomposite (Au@Cu-BTC) were verified by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffractometry, scanning electron microscopy and Fourier transform infrared spectroscopy. Cyclic and square wave voltammetric studies of the electrochemical behavior of glutathione at the modified electrode showed that the incorporation of gold particles increased the conductivity of Cu-BTC. Glutathione was detected by the formation of a Cu (II)-glutathione complex and its subsequent oxidation at ca.+ 0.25 V vs. Ag/AgCl. The proposed methodology exhibited a low limit of detection (0.30 mu mol L-1) and a wide linear dynamic range (1-10.0 mu mol L-1) with good sensitivity (0.89 +/- 0.02 mu A mu mol L-1) and repeatability (2.14 %). The high recovery (98.2 %) obtained in the analysis of a dietary supplement renders this new approach very attractive for the analytical determination of glutathione in commercial samples, particularly if the technique is extended to commercially produced screen-printed electrodes.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • Carbon
  • scanning electron microscopy
  • gold
  • transmission electron microscopy
  • copper
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy