People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicdaeid, Niamh
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Heavy metal-free MnInPSeS alloyed quantum dots-molecularly imprinted polymer as an electrochemical nanosensor for the detection of the synthetic cathinone, 3,4-methylenedioxypyrovaleronecitations
- 2023Cadmium-free silica-encapsulated molecularly imprinted AuZnCeSeS quantum dots nanocomposite as an ultrasensitive fluorescence nanosensor for methamphetamine detectioncitations
- 2022Thiolated gamma-cyclodextrin-polymer-functionalized CeFe3O4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxidecitations
- 2022Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III)citations
- 2022Fabrication of a near-infrared fluorescence-emitting SiO2-AuZnFeSeS quantum dots-molecularly imprinted polymer nanocomposite for the ultrasensitive fluorescence detection of levamisolecitations
- 2021Polymeric-coated Fe-doped ceria/gold hybrid nanocomposite as an aptasensor for the catalytic enhanced colorimetric detection of 2,4-dinitrophenolcitations
- 2020Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probecitations
- 2019Multi-shaped cationic gold nanoparticle-L-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocainecitations
- 2016A thermoanalytical, X-ray diffraction and petrographic approach to the forensic assessment of fire affected concrete in the United Arab Emiratescitations
- 2016Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogscitations
- 2011The recoverability of fingerprints on nonporous surfaces exposed to elevated temperatures
- 2009Evaluation of available techniques for the recovery of latent fingerprints from untreated plywood surfaces
- 2008Recovery of fingerprints from arson scenes
- 2008Comparison of vacuum metal deposition and powder suspension for recovery of fingerprints on wetted nonporous surfaces
Places of action
Organizations | Location | People |
---|
article
Multi-shaped cationic gold nanoparticle-L-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine
Abstract
<p>Current presumptive tests for illicit drugs can suffer from false positive results and poor selectivity, and consequentially there is a need to develop new colour spot tests specifically designed to circumvent these existing challenges. In this work, we report on a new fluorescent hybrid nanozyme peroxidase-like catalytic colorimetric sensor and demonstrate proof of concept of this novel colorimetric-specific presumptive test for cocaine. A novel peroxidase-mimic hybrid nanozyme was developed based on the localized surface plasmon resonance-enhanced fluorescence interaction between multi-shaped cationic cetyltrimethylammonium bromide (CTAB)-functionalized gold nanoparticles (AuNPs) and anionic non-cadmium fluorescent-emitting<sub>L</sub>-cysteine-capped ZnSeS alloyed quantum dots (QDs). The affinity-based interaction of cocaine with the QDs-CTAB-AuNP surface was induced by its distinct structural conformation and this forms the basis for the selective recognition. Thus, the hybrid nanozyme could function both as a catalytic affinity-based receptor and as an optical signal transducer based on the catalysed oxidation of 3,5,5-tetramethylbenzidine by H<sub>2</sub>O<sub>2</sub>. A positive bluish-green colour, specific to cocaine recognition, was colorimetrically obtained under optimum catalytic conditions. The optimized assay system detected cocaine within two minutes with unique specificity and distinct colour reaction. Under the optimum cocaine reaction conditions, the analysis of other substances and drugs on the colorimetric response of the QDs-CTAB-AuNP hybrid nanozyme revealed no colour interference, thus demonstrating that the developed probe could be utilized as a presumptive colour spot test for cocaine.</p>