People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burkitt, Lucy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2018Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoringcitations
- 2017Development of the selectivity of nitrate sensors based on ion imprinted polymerization techniquecitations
- 2016Highly selective ion imprinted polymer based interdigital sensor for nitrite detectioncitations
Places of action
Organizations | Location | People |
---|
article
Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring
Abstract
The need to determine the nitrate-nitrogen (N) concentration in water with more advanced, inexpensive and accurate sensing systems is pressing. Existing sensing systems are costly, and due to their limitations, they are difficult to use in a continuous real-time monitoring program. Ion-imprinted polymer (IIPs) is a useful technique, which allows the development of low-cost sensors with selective recognition elements. Current research has confirmed that IIPs can be combined into interdigital sensor platforms, for nitrate-N detection in aqueous media. The sensing method is based on electrochemical impedance spectroscopy (EIS) with IIP coating material, and allowing the precise detection of nitrate-N in the range of 1–10 (mg/L). Unknown samples are measured to validate the sensing method. An earlier reported sensing system is used to determine the unknown sample, which is compared with commercial sensors. Results were validated using the standard UV-spectrometric method.