People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michel, Karine
Bureau de Recherches Géologiques et Minières
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Surface functionalization of a chalcogenide IR photonic sensor by means of a polymer membrane for water pollution remediationcitations
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Studycitations
- 2018Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution
- 2018Infrared sulfide fibers for all-optical gas detectioncitations
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infraredcitations
- 2016Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fiberscitations
- 2014108mAg tracer diffusion in HgI2–Ag2S–As2S3 glass systemcitations
- 2014108mAg tracer diffusion in HgI2–Ag2S–As2S3 glass systemcitations
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2013Study of the pseudo-ternary Ag2S-As2S3-HgI2 vitreous systemcitations
- 2013Study of the pseudo-ternary Ag2S-As2S3-HgI2 vitreous systemcitations
- 2012Evanescent wave optical micro-sensor based on chalcogenide glasscitations
- 2012Use of Raman spectroscopy to characterize and distinguish minerals of the alunite supergroup
- 2012Optical sensor based on chalcogenide glasses for IR detection of bio-chemical entities
- 2011In Situ Semi-Quantitative Analysis of Polluted Soils by Laser-Induced Breakdown Spectroscopy (LIBS)citations
- 2009Infrared monitoring of underground CO2 storage using chalcogenide glass fiberscitations
- 2009Rare-earth doped chalcogenide optical waveguide in near and mid-IR for optical potential application
- 2009Infrared optical sensor for CO2 detectioncitations
- 2004Optical analysis of infrared spectra recorded with tapered chalcogenide glass fiberscitations
- 2004Réalisation d'un capteur à fibre optique infrarouge pour la détection des polluants dans les eaux usées
- 2003Development of a chalcogenide glass fiber device for in situ pollutant detectioncitations
- 2002Infrared glass fibers for in-situ sensing, chemical and biochemical reactionscitations
Places of action
Organizations | Location | People |
---|
article
Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared
Abstract
International audience ; A theoretical study of evanescent optical sensor for multipurpose detection in the Mid-Infrared of gases and pollutants in water is presented in this paper. The opto-geometrical parameters of the transducers - ridge waveguides - have been optimized in order to obtain the highest evanescent power factor for monomodal propagation in the Mid-Infrared. The highest sensitivity has been obtained for a configuration with an optimal length of waveguide L-ops = 4.3 cm for intrinsic propagation loss equal to 1 dB/cm. Then a spiral waveguide configuration is suggested to obtain this optical length path in a monolithic structure. A numerical example is also included using a ridge waveguide based on chalcogenide glasses (GeSbSe). In case of gas detection, a generic calculation of the minima concentrations to be detected as a function of the molar absorption for any working wavelength is presented. Extremely low limits of detection can be achieved due to the strong absorption coefficients of gases and chemical species in the Mid-Infrared spectral range, 268 ppb in case of carbon dioxide at lambda =4.3 p.m, 1.848 ppm and 781 ppb for methane at lambda=3.31 pm and at lambda=7.66 pm respectively. For the pollutants detection in water, an improvement of the integrated structure has been proposed to avoid water absorption in this spectral region by deposing a polymer (PIB) as waveguide superstrate, thus the limit of detection for toluene is 26 ppb at lambda=6.68 pm. These concentration minima that could be detected by the Mid-IR sensor are lower than the threshold limit values determined in the international environmental and health standards. Hence this integrated optical sensor may be considered as an attractive support tool in monitoring environmental and health fields. (C) 2016 Elsevier B.V. All rights reserved.