Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Evyapan, Murat

  • Google
  • 1
  • 4
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance36citations

Places of action

Chart of shared publication
Yushina, Irina V.
1 / 1 shared
Kadem, Burak
1 / 5 shared
Hassan, Aseel
1 / 7 shared
Basova, Tamara V.
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Yushina, Irina V.
  • Kadem, Burak
  • Hassan, Aseel
  • Basova, Tamara V.
OrganizationsLocationPeople

article

Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance

  • Yushina, Irina V.
  • Kadem, Burak
  • Evyapan, Murat
  • Hassan, Aseel
  • Basova, Tamara V.
Abstract

tIn this work, thin films of chloroaluminium phthalocyanine (ClAlPc), fluoroaluminium phthalocyanine(FAlPc) and fluorochromium phthalocyanine (FCrPc), which are insoluble in conventional solvents, weredeposited by spin coating of their solutions in trifluoroacetic acid. The sensing response of these filmsversus acetic acid, three alcohols (methanol, ethanol, butanol) and three amines (methylamine, dimethy-lamine, trimethylamine) have been investigated using surface plasmon resonance as the sensing method.It has been shown that the sensor response of the investigated films decreases in the following order:acetic acid > alcohols > amines. The optical changes as monitored by SPR method have been used in con-junction with Fick’s second law of diffusion to determine the diffusion coefficients of analyte vapor duringthe films’ swelling process. The obtained results showed that the diffusion coefficients and the swellingcharacteristics of the films are dependent on the functional group of the phthalocyanine molecule andthe molecular size of the analyte.

Topics
  • surface
  • thin film
  • tin
  • amine
  • alcohol
  • spin coating
  • surface plasmon resonance spectroscopy