People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michel, Karine
Bureau de Recherches Géologiques et Minières
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Surface functionalization of a chalcogenide IR photonic sensor by means of a polymer membrane for water pollution remediationcitations
- 2022Improvement of the sensitivity of chalcogenide-based infrared sensors dedicated to the in situ detection of organic molecules in aquatic environment
- 2021Toward Chalcogenide Platform Infrared Sensor Dedicated to the In Situ Detection of Aromatic Hydrocarbons in Natural Waters via an Attenuated Total Reflection Spectroscopy Studycitations
- 2018Infrared-Sensor Based on Selenide Waveguide Devoted to Water Pollution
- 2018Infrared sulfide fibers for all-optical gas detectioncitations
- 2017Infrared sensor for water pollution and monitoringcitations
- 2017Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infraredcitations
- 2016Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fiberscitations
- 2014108mAg tracer diffusion in HgI2–Ag2S–As2S3 glass systemcitations
- 2014108mAg tracer diffusion in HgI2–Ag2S–As2S3 glass systemcitations
- 2013Chalcogenide Glasses Developed for Optical Micro-sensor Devices
- 2013Study of the pseudo-ternary Ag2S-As2S3-HgI2 vitreous systemcitations
- 2013Study of the pseudo-ternary Ag2S-As2S3-HgI2 vitreous systemcitations
- 2012Evanescent wave optical micro-sensor based on chalcogenide glasscitations
- 2012Use of Raman spectroscopy to characterize and distinguish minerals of the alunite supergroup
- 2012Optical sensor based on chalcogenide glasses for IR detection of bio-chemical entities
- 2011In Situ Semi-Quantitative Analysis of Polluted Soils by Laser-Induced Breakdown Spectroscopy (LIBS)citations
- 2009Infrared monitoring of underground CO2 storage using chalcogenide glass fiberscitations
- 2009Rare-earth doped chalcogenide optical waveguide in near and mid-IR for optical potential application
- 2009Infrared optical sensor for CO2 detectioncitations
- 2004Optical analysis of infrared spectra recorded with tapered chalcogenide glass fiberscitations
- 2004Réalisation d'un capteur à fibre optique infrarouge pour la détection des polluants dans les eaux usées
- 2003Development of a chalcogenide glass fiber device for in situ pollutant detectioncitations
- 2002Infrared glass fibers for in-situ sensing, chemical and biochemical reactionscitations
Places of action
Organizations | Location | People |
---|
article
Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers
Abstract
Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle infrared (mid-IR) radiation from a near infrared or visible pumping source. These emitted mid-IR broad bands can probe the vibrational modes of several molecules, e.g. C-H, CO or C-Cl. Relying on this principle, a mid-IR optical sensor using the mid-IR fluorescence of Pr3+: Ga-Ge-Sb-S fibers has been developed. The detection principle is based on Fiber Evanescent Wave Spectroscopy (FEWS). The spectroscopic characterization of praseodymium ions (Pr3+) was performed in the near and mid-IR and is discussed on the basis of comparison with Judd-Ofelt calculations. The broad emission spectrum of the Pr3+: Ga-Ge-Sb-S fiber from 4 to 5 μm could enable the monitoring of multiple pollutants. In this study, chloroform detection is carried out via a novel technique derived from FEWS. In this way, an infrared sensor was developed, composed of a pumping source in near-IR, a mid-IR detector and a tapered Pr3+: chalcogenide fiber to enhance the detection sensitivity. These results demonstrate for the first time the feasibility of detecting molecules by FEWS using the mid-IR fluorescence emitted by rare earth ions doping chalcogenide fibers. This method is an effective alternative to the classical FEWS system, as RE doped chalcogenide fibers have the advantage of being a compact mid-IR source