Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lemaire, Etienne

  • Google
  • 10
  • 30
  • 168

Université de Tours

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Design, Simulation and Analysis of a LowTech Capacitive Micromachined Ultrasonic Transducer (CMUT)citations
  • 2022Exploring the mechanical performance of BaTiO3 filled HDPE nanocomposites: A comparative study of the experimental and numerical approaches4citations
  • 2021Rochelle Salt-Based Ferroelectric and Piezoelectric Composite Produced with Simple Additive Manufacturing Techniques15citations
  • 2015Fast fabrication process of low environmental impact MEMS10citations
  • 2015Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators17citations
  • 2014Effect of hydrodynamic force on microcantilever vibrations: applications to liquid-phase chemical sensing71citations
  • 2013Contribution to the development of integrated viscoelasticity sensorcitations
  • 2013Contribution au développement de microcapteurs intégrés de viscoélasticité de fluidescitations
  • 2012The Microcantilever: a Versatile Tool for Measuring the Rheological Properties of Complex Fluids51citations
  • 2011The Microcantilever: a Versatile Tool for Measuring Fluid Propertiescitations

Places of action

Chart of shared publication
Jabri, Ismail
1 / 1 shared
Noyel, Jean-Philippe
1 / 2 shared
Antouly, Kevin
1 / 2 shared
Atli, Atilla
1 / 3 shared
Hajjar, Ahmad
1 / 2 shared
Simon, Sandra
1 / 5 shared
Vaissiere, Nicolas
1 / 2 shared
Thuau, Damien
3 / 12 shared
Atilla, Atli
1 / 1 shared
De Vaulx, Jean-Baptiste
1 / 1 shared
Caillard, Benjamin
4 / 4 shared
Dufour, Isabelle
5 / 11 shared
Poulin, Philippe
1 / 55 shared
Ayela, Cédric
3 / 14 shared
Heinrich, Stephen
2 / 3 shared
Debéda, Hélène
1 / 12 shared
Josse, Fabien
1 / 5 shared
Brand, Oliver
1 / 1 shared
Lucat, Claude
1 / 3 shared
Darwiche, Ahmad
2 / 2 shared
Saya, Daisuke
2 / 3 shared
Pellet, Claude
2 / 3 shared
Nicu, Liviu
2 / 10 shared
Guirardel, Matthieu
2 / 3 shared
Amarouchene, Yacine
2 / 5 shared
Youssry, Mohamed
2 / 2 shared
Mathieu, Fabrice
2 / 7 shared
Colin, Annie
2 / 13 shared
Kellay, Hamid
2 / 9 shared
Maali, Abdelhamid
2 / 8 shared
Chart of publication period
2024
2022
2021
2015
2014
2013
2012
2011

Co-Authors (by relevance)

  • Jabri, Ismail
  • Noyel, Jean-Philippe
  • Antouly, Kevin
  • Atli, Atilla
  • Hajjar, Ahmad
  • Simon, Sandra
  • Vaissiere, Nicolas
  • Thuau, Damien
  • Atilla, Atli
  • De Vaulx, Jean-Baptiste
  • Caillard, Benjamin
  • Dufour, Isabelle
  • Poulin, Philippe
  • Ayela, Cédric
  • Heinrich, Stephen
  • Debéda, Hélène
  • Josse, Fabien
  • Brand, Oliver
  • Lucat, Claude
  • Darwiche, Ahmad
  • Saya, Daisuke
  • Pellet, Claude
  • Nicu, Liviu
  • Guirardel, Matthieu
  • Amarouchene, Yacine
  • Youssry, Mohamed
  • Mathieu, Fabrice
  • Colin, Annie
  • Kellay, Hamid
  • Maali, Abdelhamid
OrganizationsLocationPeople

article

Effect of hydrodynamic force on microcantilever vibrations: applications to liquid-phase chemical sensing

  • Debéda, Hélène
  • Josse, Fabien
  • Brand, Oliver
  • Caillard, Benjamin
  • Lemaire, Etienne
  • Lucat, Claude
  • Heinrich, Stephen
  • Dufour, Isabelle
Abstract

International audience ; At the microscale, cantilever vibrations depend not only on the microstructure’s properties and geometry but also on the properties of the surrounding medium. In fact, when a microcantilever vibrates in a fluid, the fluid offers resistance to the motion of the beam. The study of the influence of the hydrodynamic force on the microcantilever’s vibrational spectrum can be used to either (1) optimize the use of microcantilevers for chemical detection in liquid media or (2) extract the mechanical properties of the fluid. The classical method for application (1) in gas is to operate the microcantilever in the dynamic transverse bending mode for chemical detection. However, the performance of microcantilevers excited in this standard out-of-plane dynamic mode drastically decreases in viscous liquid media. When immersed in liquids, in order to limit the decrease of both the resonant frequency and the quality factor, and improve sensitivity in sensing applications, alternative vibration modes that primarily shear the fluid (rather than involving motion normal to the fluid/beam interface) have been studied and tested: these include in-plane vibration modes (lateral bending mode and elongation mode). For application (2), the classical method to measure the rheological properties of fluids is to use a rheometer. However, such systems require sampling (no in-situ measurements) and a relatively large sample volume (a few milliliters). Moreover, the frequency range is limited to low frequencies (less than 200Hz). To overcome the limitations of this classical method, an alternative method based on the use of silicon microcantilevers is presented. The method, which is based on the use of analytical equations for the hydrodynamic force, permits the measurement of the complex shear modulus of viscoelastic fluids over a wide frequency range.

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • laser emission spectroscopy
  • Silicon