People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geiger, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Characterization of transient rheological behavior of soft materials using ferrofluid dropletscitations
- 2011Process development for high volume manufacture of thermoplastic composites with integrated piezoceramic modules
- 2008Formability of accumulative roll bonded aluminum AA1050 and AA6016 investigated using bulge testscitations
- 2002Analyzing the DMLS Process by a Macroscopic FE-Model 384
Places of action
Organizations | Location | People |
---|
article
Characterization of transient rheological behavior of soft materials using ferrofluid droplets
Abstract
Physical material properties, such as elasticity, viscosity, or viscoelasticity, can be characterized by using rheometers or stick-type solenoid electromagnets. In this work, we developed a magnet measurement setup based on a Helmholtz arrangement of electromagnets. While applying homogeneous magnet fields to ferrofluid droplets inside a soft material of interest, the deformations of the ellipsoidal deformed droplets were measured. Kelvin-Voigt models and corresponding analytical descriptions were used to calculate the values of viscosity and Young's modulus of materials under test. For calibration purposes of the developed setup, glycerin/water mixtures and methylcellulose/water solutions were characterized as viscous and polyacrylamide gels as elastic materials, respectively. In addition, the interfacial tensions were calculated with respect to the magnetic Bond number from the droplet deformations. For the first time, the transient rheological behavior of viscoelastic material was measured using the method of ferrofluid droplet deformation. When polyacrylamide gel with a shear modulus of 230 Pa was evacuated for less than 40 min during preparation, it showed a strong time-depending viscoelastic behavior several minutes after starting the measurements. Here, Young's modulus increased up to the value of elastic behavior, whereas the values for viscosity decreased to a baseline. The developed setup can favorably be used in future applications to investigate local and also time-dependent rheological properties of soft materials.