People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomsen, Erik Vilain
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022A Hand-Held 190+190 Row–Column Addressed CMUT Probe for Volumetric Imagingcitations
- 2021Polysilicon on Quartz Substrate for Silicide Based Row-Column CMUTs
- 2021Analytical Deflection Profiles and Pull-In Voltage Calculations of Prestressed Electrostatic Actuated MEMS Structurescitations
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 2020Pull-in Analysis of CMUT Elementscitations
- 2020Large Scale High Voltage 192+192 Row-Column Addressed CMUTs Made with Anodic Bondingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2019Imaging Performance for Two Row–Column Arrayscitations
- 2019188+188 Row–Column Addressed CMUT Transducer for Super Resolution Imagingcitations
- 2019CMUT Electrode Resistance Design: Modelling and Experimental Verification by a Row-Column Arraycitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2018Probe development of CMUT and PZT row-column-addressed 2-D arrayscitations
- 2018Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lenscitations
- 2018Design of a novel zig-zag 192+192 Row Column Addressed Array Transducer: A simulation study.citations
- 2017Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetonecitations
- 2017Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners
- 2017Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensionscitations
- 20163-D Vector Flow Using a Row-Column Addressed CMUT Arraycitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization:Part II: Transducer Fabrication and Experimental Resultscitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodizationcitations
- 2011Fusion bonding of silicon nitride surfacescitations
- 2010Touch mode micromachined capacitive pressure sensor with signal conditioning electronics
- 2009Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitancecitations
- 2008Giant Geometrically Amplified Piezoresistance in Metal-Semiconductor Hybrid Resistorscitations
Places of action
Organizations | Location | People |
---|
article
Probe development of CMUT and PZT row-column-addressed 2-D arrays
Abstract
This paper presents the characterization of two prototyped fully integrated 62 + 62 row-column-addressed (RCA) 2-D transducer array probes, which are based on capacitive micromachined ultrasonic transducer (CMUT) and on piezoelectric transducer (PZT) technology, respectively. Both transducers have integrated apodization to reduce ghost echoes and were designed with similar acoustical features i.e. 3 MHz center frequency, λ/2-pitch and 24.8 mm<sup>2 </sup>× 24.8 mm<sup>2</sup> active footprint. The transducer arrays were assembled in a 3-D printed probe handle with electromagnetic shield and integrated electronics for driving the 128-channel coaxial cable to the scanner. The electronics were designed to allow all elements, both rows and columns, to be used interchangeably as either transmitters or receivers. The transducer characterization i.e. bandwidth, phase delay, surface pressure, sensitivity, insertion loss, and acoustical crosstalk, were based on several single element measurements, including pressure and pulse-echo, and were evaluated quantitatively and comparatively. The weighted center frequency was 3.0 MHz for both probes and the measured -6 dB fractional bandwidth was 109 ± 4% and 80 ± 3% for the CMUT and the PZT probe, respectively. The surface pressures of the CMUT and PZT were 0.55 ± 0.06 MPa and 1.68 ± 0.09 MPa, respectively, and the receive sensitivities of the rows (receiving elements) were 12.9 ± 0.7 μV/Pa and 13.7 ± 2.1 μV/Pa.