People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nordon, Alison
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Polymer pellet fabrication for accurate THz-TDS measurementscitations
- 2022Analysis of THz scattering of compacted granular materials using THz-TDScitations
- 2018Enabling precision manufacturing of active pharmaceutical ingredientscitations
- 2015System modeling and device development for passive acoustic monitoring of a particulate-liquid processcitations
- 2009Theoretical analysis of ultrasonic vibration spectra from multiple particle-plate impactscitations
- 2009Estimating particle concentration using passive ultrasonic measurement of impact vibrationscitations
- 2008Particle sizing using passive ultrasonic measurement of particle-wall impact vibrationscitations
- 2007A wideband ultrasonic test system for characterisation of particulate systems in the linear and non-linear regimescitations
- 2005Monitoring of a heterogeneous reaction by acoustic emission
Places of action
Organizations | Location | People |
---|
article
System modeling and device development for passive acoustic monitoring of a particulate-liquid process
Abstract
This paper presents the development of a passive ultrasonic monitoring system for the detection of acoustic emission (AE) created by chemical particles striking the inner wall of a reactor vessel. The finite element (FE) code PZFlex was used to analyze the complex interactions between chemical particles and the vessel wall. A 4-layer 2D model was developed comprising a liquid load medium and a glass-oil-glass combination corresponding to the jacketed vessel reactor. The model has been experimentally validated with excellent correlation achieved. The excitation function was derived from Hertz’s theory and used as the model stimulus corresponding to particles striking the inner glass wall. Analysis of the FE simulations provided the transducer specifications for a passive ultrasonic monitoring system. The system comprises two transducers with complementary characteristics: narrow bandwidth/high sensitivity; wideband/low sensitivity. Importantly, the sensitivity of the resonant transducer provides discrimination of particle concentration. Moreover, the broader bandwidth of the off-resonant device demonstrates potential for in-situ estimation of particle size. The performance afforded by this approach has considerable potential for real-time process monitoring in the chemicals and pharmaceutical industries.