Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ambikairaja, Eliathamby

  • Google
  • 1
  • 5
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating91citations

Places of action

Chart of shared publication
Peng, Gang-Ding
1 / 4 shared
Rajan, Ginu
1 / 4 shared
Webb, David J.
1 / 46 shared
Noor, Yusof Mohd
1 / 1 shared
Liu, Bing
1 / 3 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Peng, Gang-Ding
  • Rajan, Ginu
  • Webb, David J.
  • Noor, Yusof Mohd
  • Liu, Bing
OrganizationsLocationPeople

article

A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating

  • Peng, Gang-Ding
  • Rajan, Ginu
  • Webb, David J.
  • Ambikairaja, Eliathamby
  • Noor, Yusof Mohd
  • Liu, Bing
Abstract

A simple, low cost and fast response time intrinsic relative humidity sensor system based on an etched singlemode polymer fiber Bragg (POFBG) is presented in this paper. A macro-bend linear edge filter which converts the humidity induced wavelength shift into an intensity change is used as the interrogation technique. The singlemode POFBG is etched to micro-meters in diameter to improve the response time of the humidity sensor. A response time of 4.5 s is observed for a polymer FBG with a cladding diameter of 25 μm. The overall sensor system sensitivity was 0.23 mV/%RH. The etched POFBG humidity sensor shows anexponential decrease in response time with a decrease in fiber diameter. The developed sensor might have potential applications in a wide range of applications where fast and accurate real time humidity control is required.

Topics
  • impedance spectroscopy
  • polymer