People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcbride, John Willaim
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2019Transient contact opening forces in a MEMS switch using Au/MWCNT compositecitations
- 2019Arc modeling to predict arc extinction in low-voltage switching devicescitations
- 2018In-situ contact surface characterization in a MEMS ohmic switch under low current switchingcitations
- 2015Characterisation of nanographite for MEMS resonators
- 2013A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switchescitations
- 2012The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric fieldcitations
- 2009The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc biascitations
- 2009Micro-computer tomography-An aid in the investigation of structural changes in lead zirconate titanate ceramics after temperature-humidity bias testingcitations
- 2009Study of temperature change and vibration induced fretting on intrinsically conducting polymer contact systemscitations
- 2006The contact resistance force relationship of an intrinsically conducting polymer interfacecitations
- 2006The influence of thermal cycling and compressive force on the resistance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid)-coated surfacescitations
- 2005Intermittency events in bio-compatible electrical contactscitations
- 2005The fretting characteristics of intrinsically conducting polymer contacts
- 2005Displacement measurements at the connector contact interface employing a novel thick film sensorcitations
- 2004The contact resistance force relationship of an intrinsically conducting polymer interfacecitations
- 2004Minimising fretting slip in connector terminals using conducting polymer contacts
- 2002Fretting in connector terminals using conducting polymer contacts
- 2002Fretting corrosion studies of an extrinsic conducting polymer and tin Interfacecitations
- 2002Fretting corrosion and the reliability of multicontact connector terminalscitations
- 2000Degradation of road tested automotive connectorscitations
Places of action
Organizations | Location | People |
---|
article
The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc bias
Abstract
A key advantage of piezo-ceramic technology is the extremely low power consumption that can be achieved compared to electromagnetic technology. However leakage currents through the ceramic limit the minimum power consumption achievable particularly when exposed to harsh environments. This paper presents a systematic study of temperature, humidity and electrical field on the electrical resistance of soft PZT ceramics under dc bias. Temperature-humidity bias testing methods are used to assess electrical resistance changes in soft PZT beams. Results show that changes in electrical resistance occur in two stages. The first stage shows little dielectric change and that its duration is dependent on the ambient relative humidity. The second stage is characterized by a much more rapid fall in ceramic resistance and is not as dependent on the relative humidity. Evidence is presented showing that the leakage currents are caused by an ionic migration process. Mathematical models are presented to describe the degradation process and to predict the onset of resistance. These models are shown to give good agreement with experimental results. The role of electrode materials and ceramic microstructure in the development of leakage currents is discussed