People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malekan, Mohammad
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Numerical analysis of machinability and surface alterations in cryogenic machining of additively manufactured Ti6Al4V alloycitations
- 2024Micro-macro relationship between microstructure and mechanical behavior of 316L stainless steel fabricated using L-PBF additive manufacturing
- 2024Investigating temperature, stress, and residual stresses in laser powder bed fusion additive manufacturing of Inconel 625citations
- 2024On the mechanical behavior of polymeric lattice structures fabricated by stereolithography 3D printing
- 2024Effects of edge radius and coating thickness on the cutting performance of AlCrN-coated toolcitations
- 2024Effect of friction on critical cutting depth for ductile–brittle transition in material removal mechanism
- 2024On the effect of small laser spot size on the mechanical behaviour of 316L stainless steel fabricated by L-PBF additive manufacturingcitations
- 2024On the effect of small laser spot size on the mechanical behaviour of 316L stainless steel fabricated by L-PBF additive manufacturingcitations
- 2022An Abaqus plug-in to simulate fatigue crack growthcitations
- 2021An Abaqus plug-in to simulate fatigue crack growthcitations
- 2018Analysis of a main fatigue crack interaction with multiple micro-cracks/voids in a compact tension specimen repaired by stop-hole techniquecitations
- 2018Fracture analysis in plane structures with the two-scale G/XFEM methodcitations
- 2018Two-dimensional fracture modeling with the generalized/extended finite element methodcitations
- 2016Finite element simulation of gaseous detonation-driven fracture in thin aluminum tube using cohesive elementcitations
Places of action
Organizations | Location | People |
---|
article
Numerical analysis of machinability and surface alterations in cryogenic machining of additively manufactured Ti6Al4V alloy
Abstract
Metal additive manufacturing (AM) technology has been utilized in many industries including automotive, aerospace, and medical. AM Ti6Al4V (Ti64) alloy is highly noticed for production of medical instruments such as dental implants and the machining process is mostly needed during the production or post-processing of these components. Numerical model, as a powerful tool, can be efficiently used for analyzing the machining process. A customized model was employed using a user-written subroutine in this work to evaluate machinability and microstructural changes in cryogenic machining of AM Ti64 alloy. For this purpose, the microstructural changes were simulated as the new numerical outputs. The numerical results of cutting forces, temperature, nano-hardness, and alpha lamellae thickness (grain size) were successfully verified by corresponding experiments from literature. Then, the impact of tool geometry (including rake and clearance angles, cutting edge radius, and nose radius) on the machinability performance was examined. It was found that, the variation of clearance and rake angles were more effective on depth of the hardened layer compared to the other parameters. Thickness of alpha lamellae phase near the machined surface and depth of the affected layer by nano-hardness changes were changed from 0.9 to 1.58 µm, and from 18 to 40 µm, respectively. Overall, it was concluded that the variation of insert positioning made by tool holder (change in rake and clearance angles) was an effective parameter on the process outputs when machining AM Ti64 alloy.