People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Hulle, Stijn
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Process modeling and optimization of photocatalytic treatment of dye-polluted effluent using novel polyaniline/graphene oxide-Fe3O4-Ag nanocompositescitations
- 2024Development of photocatalytic semiconductors and nanocomposites with excellent optoelectronic and electrochemical properties for dye effluent remediation : a reviewcitations
- 2023Electrocoagulation flotation as a municipal wastewater (pre-)treatment technology : effect of weather conditions and current densitycitations
- 2022Iron oxide coated sand (IOS) : scale-up analysis and full-scale application for phosphorus removal from goat farm wastewatercitations
- 2021Roof runoff contamination : establishing material-pollutant relationships and material benchmarking based on laboratory leaching testscitations
- 2018Techno-economic assessment of surrogate-based real-time control and monitoring of secondary effluent ozonation at pilot scalecitations
Places of action
Organizations | Location | People |
---|
article
Iron oxide coated sand (IOS) : scale-up analysis and full-scale application for phosphorus removal from goat farm wastewater
Abstract
Effective eutrophication control, especially for decentralized wastewater treatment, has received increasing attention in recent years. In view of this, iron oxide coated sand (IOS) granules, a recycled waste product from the drinking water industry, was investigated for phosphorus removal from goat farm wastewater, both at laboratory-scale and at full-scale. Brunauer-Emmett-Teller adsorption revealed a high specific surface area (249 m(2)/g) of the IOS. Fourier Transform Infrared Spectroscopy and X-ray Diffraction demonstrated that Fe(III) compounds are the main functional component and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy showed that Fe and O elements covered more than 84% of the surface of the IOS. The IOS granules showed good phosphorus adsorption capacity over a wide pH range during laboratory-scale batch tests. More-over, the phosphorus adsorption was very fast and the residual phosphorus concentration dropped below 0.02 mg/L within an hour at a dosage of 20 g/L. After adsorption, the exhausted IOS could be regenerated by using 0.5 M KOH, and more than 80% adsorption capacity remained. Laboratory-scale column tests with real waste-water originating from a goat farm were run and Bed Depth Service Time and Bohart-Adams models were applied in view of scale-up. Based on this, a full-scale IOS based fixed bed reactor was designed, built and tested at a goat farm. A TP removal efficiency of 99% with a 0.87 m(3) IOS fixed bed reactor (fed at 2.2 m(3)/d) was obtained. The TP concentration in the effluent remained below 0.3 mg/L for nearly 400 days, achieving long term TP removal. This study demonstrates that IOS based treatment is an ecological and environmentally friendly method, suitable for full-scale (decentralized) wastewater treatment.