People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Strobl, Katharina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties
Abstract
This study investigates the effect of a high volume fraction of Fe-rich intermetallic phases on microstructure evolution and mechanical properties in a cold rolled Al-Mg-Si wrought alloy. A conventional Al-Mg-Si alloy was modified by significantly increasing its Fe and Mn content, while the Si content was adjusted to keep the matrix composition comparable. Subsequent fast solidification and thermomechanical processing generated a dense distribution of fine intermetallic phases, which culminated in significant grain-refinement and uniform texture. The resulting alloy, with almost 10 vol-% Fe-rich intermetallic phase, features an unusually attractive combination of strength and ductility in addition to the substantially increased strain hardening typical of heterostructured materials, and can facilitate a higher usage of scrap input.