People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Poulsen, Henning, F.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 20243D microstructural and strain evolution during the early stages of tensile deformationcitations
- 2024Microstructure and stress mapping in 3D at industrially relevant degrees of plastic deformationcitations
- 2023Exploring 4D microstructural evolution in a heavily deformed ferritic alloycitations
- 2023Inferring the probability distribution over strain tensors in polycrystals from diffraction based measurementscitations
- 2022High-resolution 3D X-ray diffraction microscopy: 3D mapping of deformed metal microstructurescitations
- 2022Multiscale Exploration of Texture and Microstructure Development in Recrystallization Annealing of Heavily Deformed Ferritic Alloyscitations
- 2022Multiscale characterisation of strains in semicrystalline polymers
- 20224D microstructural evolution in a heavily deformed ferritic alloycitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2019Fast and quantitative 2D and 3D orientation mapping using Raman microscopycitations
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Ultra-low-angle boundary networks within recrystallizing grainscitations
- 2015Injection molded polymeric hard X-ray lensescitations
- 2014High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structurescitations
- 2012X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method
- 2011On the Use of Laguerre Tessellations for Representations of 3D Grain Structurescitations
- 2011Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffractioncitations
- 2011Three-Dimensional Orientation Mapping in the Transmission Electron Microscopecitations
- 2009Structured scintillators for X-ray imaging with micrometre resolutioncitations
- 2009New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imagingcitations
- 2009Measuring the elastic strain of individual grains in polycrystalline materials
- 2008A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillatorscitations
- 2004Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile samplecitations
- 2004Measurement of the components of plastic displacement gradients in three dimensionscitations
- 2004Metal Microstructures in Four Dimensions
- 20023DXRD microscopy - a comparison with neutron diffractioncitations
- 2000A high energy microscope for local strain measurements within bulk materials
Places of action
Organizations | Location | People |
---|
article
4D microstructural evolution in a heavily deformed ferritic alloy
Abstract
We present a multiscale study on the recovery and recrystallisation of a heavily deformed (85% reduction in size) Fe–Si–Sn alloy using a combination of dark field X-ray microscopy (DFXM), synchrotron X-ray diffraction (SXRD) and electron backscatter diffraction (EBSD). By utilizing DFXM, we focus on a grain within the high stored energy (HSE) regions, and track it through consecutive isothermal annealing steps. The intra-granular structure of the as-deformed grain reveals deformation bands separated by ≈3–5° misorientation. During the early stages of annealing, cells with 2–5° misorientation form while new nuclei appear. The recrystallized grains nucleate near prior grain boundaries, having a typical internal angular spread of <0.05°. The SXRD results suggest no significant macroscopic texture change after annealing for 1400s at 610 °C in the HSE regions. All results indicate that higher misorientation zones such as grain boundaries or junction points of deformation bands are preferential nucleation regions.