People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ludwig, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Hypo-peritectic TRIS–NPG in a stationary temperature gradientcitations
- 2022On/off directional solidification of near peritectic TRIS-NPG with a planar but tilted solid/liquid interface under microgravity conditions.citations
- 2022In Situ Observation of Coupled Growth Morphologies in Organic Peritectics Under Pure Diffusion Conditionscitations
- 2020Investigation of Peritectic Solidification Morphologies by Using the Binary Organic Model System TRIS-NPGcitations
- 2019Calibration of Numerical and Determination of Physical Parameters for the Organic Model System TRIS-NPG
- 2018Investigation on Peritectic Layered Structures by Using the Binary Organic Components TRIS-NPG as Model Substances for Metal-Like Solidification
- 2018Investigation on the Binary Organic Components TRIS-NPG as Suitable Model Substances for Metal-Like Solidification
- 2018Investigation on the Liquid Flow ahead of the Solidification Front During the Formation of Peritectic Layered Solidification Structure
- 2017Phase-field modelling of ternary eutetic solidification in hot dip galvanization
- 2014Influence of dendritic morphology on the calculation of macrosegregation in steel ingotcitations
- 2009Thermal stability of a binary non-faceted/non-faceted peritectic organic alloy at elevated temperaturescitations
Places of action
Organizations | Location | People |
---|
article
On/off directional solidification of near peritectic TRIS-NPG with a planar but tilted solid/liquid interface under microgravity conditions.
Abstract
Understanding phenomena that occur during gradient annealing and initial transient of Bridgman-type directional solidification processes is essential for producing high-performance materials with specific properties. An experiment with alternating long time gradient annealing and directional solidification periods was performed on the International Space Station, using a near-peritectic transparent TRIS-NPG alloy. It transpired that accumulation of solute ahead of the solid/liquid interface continued to progress and that steady-state growth conditions were never achieved. The results demonstrate that (i) liquid being squeezed out from the mush during the long time gradient annealing period disables the formation of a flat interface; (ii) a thermal bias caused a slightly tilted planar solidification front; and (iii) growth of the metastable pro-peritectic α-phase led to the formation of a supersaturated solid that solidified with an intriguing low growth rate.