Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmadi, Masoud

  • Google
  • 8
  • 13
  • 131

ASML (Netherlands)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Analytical modelling of the electrical conductivity of CNT-filled polymer nanocomposites1citations
  • 2024Modelling piezoresistive behaviour in finitely deformed elastomeric compositescitations
  • 2022Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture control14citations
  • 2022The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatings27citations
  • 2021Cracking behavior and formability of Zn-Al-Mg coatings23citations
  • 2021Cracking behavior and formability of Zn-Al-Mg coatings:Understanding the influence of steel substrates23citations
  • 2020Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings24citations
  • 2019Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steel19citations

Places of action

Chart of shared publication
Saxena, Prashant
1 / 5 shared
Kooi, Bart Jan
4 / 74 shared
Pei, Yutao T.
5 / 23 shared
Salgın, Bekir
4 / 4 shared
Kooi, Bart J.
1 / 29 shared
Pei, Yutao
1 / 13 shared
Salgin, Bekir
1 / 1 shared
Galinmoghaddam, E.
1 / 3 shared
Westerwaal, R. J.
1 / 12 shared
Hosson, Jeff Th. M. De
1 / 119 shared
Langkruis, J. Van De
1 / 2 shared
Zoestbergen, E.
1 / 7 shared
Sabooni, S.
1 / 4 shared
Chart of publication period
2024
2022
2021
2020
2019

Co-Authors (by relevance)

  • Saxena, Prashant
  • Kooi, Bart Jan
  • Pei, Yutao T.
  • Salgın, Bekir
  • Kooi, Bart J.
  • Pei, Yutao
  • Salgin, Bekir
  • Galinmoghaddam, E.
  • Westerwaal, R. J.
  • Hosson, Jeff Th. M. De
  • Langkruis, J. Van De
  • Zoestbergen, E.
  • Sabooni, S.
OrganizationsLocationPeople

article

Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture control

  • Kooi, Bart Jan
  • Pei, Yutao T.
  • Salgın, Bekir
  • Ahmadi, Masoud
Abstract

Cracking limits the formability of Mg-alloyed zinc coatings on steel substrates. Unfavorable crystal orientations and brittle microstructural components serve as the main sources of cracks in these coatings. In this study, we overcome the deformation-induced cracking and substantially enhance the formability of Zn-Al-Mg coatings by controlling their crystallographic texture. To demonstrate this, in-situ scanning electron microscopy uniaxial tensile tests and thorough orientation image microscopy have been employed. Ultimately, we validate our findings by implementing quantitative plastic deformation-based criteria, namely local strain hardening exponent and Schmid factor distributions within the examined coating microstructures. The approach and findings of the present work considerably resolve the long-lasting cracking problem of these coatings.

Topics
  • microstructure
  • polymer
  • scanning electron microscopy
  • zinc
  • crack
  • steel
  • texture