Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gerold, B.

  • Google
  • 1
  • 5
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Processing-controlled suppression of Lüders elongation in AlMgMn alloys26citations

Places of action

Chart of shared publication
Pogatscher, Stefan
1 / 61 shared
Ebenberger, Paul
1 / 1 shared
Kirnstötter, Stefan
1 / 2 shared
Zaefferer, Stefan
1 / 26 shared
Uggowitzer, Peter J.
1 / 62 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Pogatscher, Stefan
  • Ebenberger, Paul
  • Kirnstötter, Stefan
  • Zaefferer, Stefan
  • Uggowitzer, Peter J.
OrganizationsLocationPeople

article

Processing-controlled suppression of Lüders elongation in AlMgMn alloys

  • Pogatscher, Stefan
  • Gerold, B.
  • Ebenberger, Paul
  • Kirnstötter, Stefan
  • Zaefferer, Stefan
  • Uggowitzer, Peter J.
Abstract

<p>The Lüders elongation, ε<sub>L</sub>, its dependence on grain size, and its processing-controlled suppression are examined on several AlMgMn alloys. We found that grain size variations result in a Hall-Petch-type ε<sub>L</sub>relation. We interpret the increase in macroscopic flow stress upon ε<sub>L</sub>as a transitional increase in the activation stress of dislocation sources, expressed by an additional term of the Hall-Petch coefficient. The decisive measure for suppressing ε<sub>L</sub>is based on the formation of non-aged dislocations. We demonstrate that these can be created intrinsically by utilization of the difference in the thermal expansion of matrix and primary constituents upon quenching.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • dislocation
  • thermal expansion
  • activation
  • quenching