People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leonardis, Ales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Growth of β intermetallic in an Al-Cu-Si alloy during directional solidification via machine learned 4D quantification
Abstract
Fe contamination is a serious composition barrier for Al recycling. In Fe-containing Al-Si-Cu alloy, a brittle and plate-shaped β phase forms, degrading the mechanical properties. Here, 4D (3D plus time) synchrotron X-ray tomography was used to observe the directional solidification of Fe-containing Al-Si-Cu alloy. The quantification of the coupled growth of the primary and β phase via machine learning and particle tracking, demonstrates that the final size of the β intermetallics were strongly influenced by the solute segregation and space available for growth whereas the β orientation was controlled by the temperature gradient direction. The work can be used to validate predictive models.