People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giuntini, Diletta
Hamburg University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Efficient modelling of ceramic sintering processes:Application to bilayers and membranescitations
- 2023Nanoindentation creep of supercrystalline nanocompositescitations
- 2023Efficient modelling of ceramic sintering processescitations
- 2022Nanoindentation creep of supercrystalline nanocomposites
- 2022Nanoindentation of Supercrystalline Nanocomposites:Linear Relationship Between Elastic Modulus and Hardnesscitations
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2022Bridging Nanocrystals to Robust, Multifunctional, Bulk Materials through Nature-Inspired, Hierarchical Designcitations
- 2022Nanoindentation of Supercrystalline Nanocompositescitations
- 2021Constitutive and fracture behavior of ultra-strong supercrystalline nanocompositescitations
- 2021Defects and plasticity in ultrastrong supercrystalline nanocompositescitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocomposites: An in Situ SAXS/WAXS Study during Uniaxial Compressioncitations
- 2021Deformation Behavior of Cross-Linked Supercrystalline Nanocompositescitations
- 2020Ultra-thin and ultra-strong organic interphase in nanocomposites with supercrystalline particle arrangement: Mechanical behavior identification via multiscale numerical modelingcitations
- 2020Mapping the Mechanical Properties of Hierarchical Supercrystalline Ceramic-Organic Nanocompositescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticles
- 2019Hierarchical supercrystalline nanocomposites through the self-assembly of organically-modified ceramic nanoparticlescitations
- 2019Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites
- 2019Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocompositescitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials
- 2019Anisotropy of mass transfer during sintering of powder materials with pore–particle structure orientationcitations
- 2019Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: development of mechanically robust, bulk superparamagnetic materialscitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2016Sintering shape distortions controlled by interface roughness in powder compositescitations
- 2013Initial stage of free pressureless spark-plasma sintering of vanadium carbide: Determination of surface diffusion parameterscitations
Places of action
Organizations | Location | People |
---|
article
Sintering shape distortions controlled by interface roughness in powder composites
Abstract
The co-sintering of laminar composites is modeled by means of finite element simulations. The densification of an alumina/ceria-stabilized tetragonal zirconia polycrystal bilayer is optimized by substituting the conventional flat interface morphology with a wavy contact surface. The presence of such roughness significantly decreases the undesired macroscopic distortions characterizing multi-material sintering. Various configurations of the wavy interface are numerically reconstructed. The introduction of rough interfaces generates beneficial stress redistribution and constraint relaxation effects, thus reducing the bending of the composite. The obtained results are in good agreement with previously conducted experiments and provide new guidelines to prevent flaw generation.