Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soda, Prabhath Ranjan Kumar

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Development of 3D printable stabilized earth-based construction materials using excavated soil: Evaluation of fresh and hardened properties12citations

Places of action

Chart of shared publication
M., Sahana C.
1 / 1 shared
Dwivedi, Ashutosh
1 / 2 shared
Gupta, Souradeep
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • M., Sahana C.
  • Dwivedi, Ashutosh
  • Gupta, Souradeep
OrganizationsLocationPeople

article

Development of 3D printable stabilized earth-based construction materials using excavated soil: Evaluation of fresh and hardened properties

  • M., Sahana C.
  • Soda, Prabhath Ranjan Kumar
  • Dwivedi, Ashutosh
  • Gupta, Souradeep
Abstract

Soil excavated during construction and demolition can be utilized to reduce the demand for natural sand in 3D printed constructions. This research attempts to systematically develop 3D printable stabilized earth-based materials using excavated soil (clay content of 42.5 %) as 25 % and 50 % replacement of natural sand, and examine their compressive strength, water permeable porosity, and moisture sensitivity. The effectiveness of two binder systems – Ordinary Portland Cement (OPC) and a combination of OPC and ground granulated blast furnace slag (GGBS used to replace 30 % OPC by mass), was investigated. Non-expansive clay in the soil leads to a steeper reduction in apparent viscosity, 12–15 % higher flow retention, and 50–60 % lower plastic viscosity of soil-based mixes, thus contributing to superior extrusion quality at 35–40 mm lower initial flow than OPC-sand and OPC-GGBS-sand mixes. The addition of GGBS, due to its irregular particle morphologies and interlocking effects, further enhances the shape retention of the printed layers by 8–26 % compared to OPC-soil mortars. The structural build-ups in OPC-soil and OPC-GGBS-soil mortars increase with the increase in clay content, which enabled buildability up to a height of 1.2 m compared to only 0.51–0.55 m for OPC-sand and OPC-GGBS-sand mortars. Higher water demand due to the addition of natural clay increases the porosity of 3D printed OPC-soil mortars, thereby lowering compressive strength and increasing moisture sensitivity. However, a blend of OPC and GGBS substantially reduces the moisture sensitivity of the printed mortars at 28-day age, attributed to better stabilization of clay through hydraulic and pozzolanic action of GGBS. 28-day wet compressive strength of 14–25 MPa is obtained for the printed soil-based mixes depending on the soil dosage and loading direction. In summary, the study provides a feasible solution for the 3D printing of stabilized earth structures with lower demand for natural sand and OPC.

Topics
  • impedance spectroscopy
  • polymer
  • extrusion
  • strength
  • cement
  • viscosity
  • porosity
  • ultraviolet photoelectron spectroscopy