Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ugilt Larsen, Søren

  • Google
  • 2
  • 8
  • 13

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Greenhouse gas emissions from bio-based growing media12citations
  • 2021Developing plant bioassays to evaluate the performance of sustainable growing media1citations

Places of action

Chart of shared publication
Mogensen, Lisbeth
1 / 3 shared
Smith, Aidan Mark
2 / 3 shared
Knudsen, Marie Trydeman
1 / 3 shared
Hashemi, Fatemeh
1 / 2 shared
Petersen, Karen Koefoed
1 / 1 shared
Ottosen, Carl-Otto
1 / 1 shared
Mendanha, Thayna
1 / 1 shared
Zhou, Rong
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Mogensen, Lisbeth
  • Smith, Aidan Mark
  • Knudsen, Marie Trydeman
  • Hashemi, Fatemeh
  • Petersen, Karen Koefoed
  • Ottosen, Carl-Otto
  • Mendanha, Thayna
  • Zhou, Rong
OrganizationsLocationPeople

article

Greenhouse gas emissions from bio-based growing media

  • Mogensen, Lisbeth
  • Smith, Aidan Mark
  • Knudsen, Marie Trydeman
  • Ugilt Larsen, Søren
  • Hashemi, Fatemeh
Abstract

<p>In this study, using an LCA approach we explored how bio-based peat alternatives (wood fiber, compost, and hydrochar based on willow and degassed fiber from agricultural waste) and their mixtures (75 % peat with 25 % peat alternative) as growing media (GM) for plant production in Denmark may provide benefits for reducing greenhouse gas emissions compared to peat. To perform this, foreground data (collected via personal communication and literature) was used together with background data from Ecoinvent V3.8. The chosen functional unit was 1 m<sup>3</sup> of GM and the system boundary was from cradle to use as GM. The global warming potential of all the peat alternatives showed significant reduction, varying between 89 and 109 % compared to peat. When incorporating 25 % of each alternative with peat, the climate footprint was reduced by 16 to 33 % compared to pure peat. Thus, there are large climate prospects in replacing peat with bio-based alternatives, and the results underlines the relevance of being able to increase the proportion of the bio-based components in their mixtures with peat beyond the 25 % and towards 100 % replacement. The effectiveness of peat substitutes in term of reducing the CO<sub>2</sub> emissions is affected by choice of the feedstock, their processing method and emissions of their end-use.</p>

Topics
  • impedance spectroscopy
  • wood