People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knudsen, Marie Trydeman
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Greenhouse gas emissions from bio-based growing mediacitations
- 2024Environmental performance of seaweed cultivation and use in different industries: A systematic reviewcitations
- 2020Carbon footprint and land use of oat and faba bean protein concentrates using a life cycle assessment approachcitations
Places of action
Organizations | Location | People |
---|
article
Greenhouse gas emissions from bio-based growing media
Abstract
<p>In this study, using an LCA approach we explored how bio-based peat alternatives (wood fiber, compost, and hydrochar based on willow and degassed fiber from agricultural waste) and their mixtures (75 % peat with 25 % peat alternative) as growing media (GM) for plant production in Denmark may provide benefits for reducing greenhouse gas emissions compared to peat. To perform this, foreground data (collected via personal communication and literature) was used together with background data from Ecoinvent V3.8. The chosen functional unit was 1 m<sup>3</sup> of GM and the system boundary was from cradle to use as GM. The global warming potential of all the peat alternatives showed significant reduction, varying between 89 and 109 % compared to peat. When incorporating 25 % of each alternative with peat, the climate footprint was reduced by 16 to 33 % compared to pure peat. Thus, there are large climate prospects in replacing peat with bio-based alternatives, and the results underlines the relevance of being able to increase the proportion of the bio-based components in their mixtures with peat beyond the 25 % and towards 100 % replacement. The effectiveness of peat substitutes in term of reducing the CO<sub>2</sub> emissions is affected by choice of the feedstock, their processing method and emissions of their end-use.</p>