Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parsons, John

  • Google
  • 4
  • 27
  • 84

University of Amsterdam

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Relationship between Composition and Environmental Degradation of Poly(isosorbide-co-diol oxalate) (PISOX) Copolyesters6citations
  • 2022Biodegradability of novel high Tg poly(isosorbide-co-1,6-hexanediol) oxalate polyester in soil and marine environments28citations
  • 2022Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume7citations
  • 2014Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge43citations

Places of action

Chart of shared publication
Weinland, Daniel H.
1 / 1 shared
Maas, Kevin Van Der
1 / 1 shared
Gruter, Gert-Jan M.
1 / 1 shared
Rijke, Eva De
1 / 1 shared
Wang, Yue
1 / 15 shared
Tietema, Albert
1 / 1 shared
Putten, Robert-Jan Van
1 / 1 shared
Trijnes, Dio
1 / 1 shared
Putten, R.-J. Van
1 / 1 shared
Maas, K. Van Der
1 / 1 shared
Gruter, G.-J. M.
1 / 4 shared
Davey, C. J. E.
1 / 3 shared
Wang, Y.
1 / 134 shared
Tietema, A.
1 / 4 shared
Hartog, Niels
1 / 2 shared
Hassanizadeh, S. Majid
1 / 1 shared
Ertl, Siegmund
1 / 1 shared
Gerritse, Jan
1 / 1 shared
Leeuwen, Johan A. Van
1 / 1 shared
De Voogt, Pim
1 / 1 shared
Waaijers, S. L.
1 / 2 shared
Jurgens, S. S.
1 / 1 shared
Helmus, Rick
1 / 2 shared
Vleugel, M.
1 / 1 shared
Kraak, M. H. S.
1 / 1 shared
Uittenbogaard, D.
1 / 1 shared
Dunnebier, D.
1 / 1 shared
Chart of publication period
2024
2022
2014

Co-Authors (by relevance)

  • Weinland, Daniel H.
  • Maas, Kevin Van Der
  • Gruter, Gert-Jan M.
  • Rijke, Eva De
  • Wang, Yue
  • Tietema, Albert
  • Putten, Robert-Jan Van
  • Trijnes, Dio
  • Putten, R.-J. Van
  • Maas, K. Van Der
  • Gruter, G.-J. M.
  • Davey, C. J. E.
  • Wang, Y.
  • Tietema, A.
  • Hartog, Niels
  • Hassanizadeh, S. Majid
  • Ertl, Siegmund
  • Gerritse, Jan
  • Leeuwen, Johan A. Van
  • De Voogt, Pim
  • Waaijers, S. L.
  • Jurgens, S. S.
  • Helmus, Rick
  • Vleugel, M.
  • Kraak, M. H. S.
  • Uittenbogaard, D.
  • Dunnebier, D.
OrganizationsLocationPeople

article

Biodegradability of novel high Tg poly(isosorbide-co-1,6-hexanediol) oxalate polyester in soil and marine environments

  • Putten, R.-J. Van
  • Parsons, John
  • Maas, K. Van Der
  • Gruter, G.-J. M.
  • Davey, C. J. E.
  • Wang, Y.
  • Tietema, A.
Abstract

<p>In order to reduce the plastic accumulation in the environment, biodegradable plastics are attracting interest in the plastics market. However, the low thermal stability of most amorphous biodegradable polymers limits their application. With the aim of combining high glass transition temperature (T<sub>g</sub>), with good (marine) biodegradation a family of novel fully renewable poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was recently developed. In this study, the biodegradability of a representative copolyester, poly(isosorbide-co-1,6-hexanediol) oxalate (PISOX-HDO), with 75/25 mol ratio IS/HDO was evaluated at ambient temperature (25 °C) in soil and marine environment by using a Respicond system with 95 parallel reactors, based on the principle of frequently monitoring CO<sub>2</sub> evolution. During 50 days incubation in soil and seawater, PISOX-HDO mineralised faster than cellulose. The ready biodegradability of PISOX-HDO is related to the relatively fast non-enzymatic hydrolysis of polyoxalates. To study the underlying mechanism of PISOX-HDO biodegradation, the non-enzymatic hydrolysis of PISOX-HDO and the biodegradation of the monomers in soil were also investigated. Complete hydrolysis was obtained in approximately 120 days (tracking the formation of hydrolysis products via <sup>1</sup>H NMR). It was also shown that (enzymatic) hydrolysis to the constituting monomers is the rate-determining step in this biodegradation mechanism. These monomers can subsequently be consumed and mineralised by (micro)organisms in the environment much faster than the polyesters. The combination of high T<sub>g</sub> (&gt;100 °C) and fast biodegradability is quite unique and makes this PISOX-HDO copolyester ideal for short term applications that demand strong mechanical and physical properties.</p>

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • cellulose
  • Nuclear Magnetic Resonance spectroscopy