People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Csetényi, L. J.
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Mechanical processing of wet stored fly ash for use as a cement component in concrete
- 2024Assessing setting times of cementitious materials using semi‑adiabatic calorimetry
- 2023Portlandcementek Kötési Idejének Meghatározása Féladiabatikus Kalorimetriás Módszerrel
- 2023Fungal biorecovery of cerium as oxalate and carbonate biomineralscitations
- 2022Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durabilitycitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Influence of wet storage on fly ash reactivity and processing for use in concretecitations
- 2022Fungal-induced CaCO3 and SrCO3 precipitationcitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2020Oil-based mud waste reclamation and utilisation in low-density polyethylene compositescitations
- 2019Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus nigercitations
- 2019Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungicitations
- 2017Evaluation of Fly Ash Reactivity Potential Using a Lime Consumption Testcitations
- 2016Abrasion resistance of sustainable green concrete containing waste tire rubber particlescitations
- 2016Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixturescitations
- 2015Influence of Portland cement characteristics on air-entrainment in fly ash concretecitations
- 2015Sustainable use of marble slurry in concretecitations
- 2015Durability studies on concrete containing wollastonitecitations
- 2013Mechanical and durability studies on concrete containing wollastonite-fly ash combinationcitations
- 2013Evaluating Test Methods for Rapidly Assessing Fly Ash Reactivity for Use in Concrete
- 2010Mechanisms of sulfate heave prevention in lime stabilized clays through pozzolanic additionscitations
- 2003Alkali activation of PFA
- 2002Effect of potassium on setting times of borate admixed cement pastes
- 2001Phase equilibrium study in the CaO-K2O-B2O3-H2O system at 25°Ccitations
Places of action
Organizations | Location | People |
---|
article
Fungal-induced CaCO3 and SrCO3 precipitation
Abstract
<p>Biomineralization of CaCO3 by microorganisms is a well-documented process considered applicable to concrete self-healing and metal bioremediation. Urea hydrolysis is the most widely explored and efficient pathway regarding concrete bioprotection. However, the potential of fungi has received relatively little attention compared to bacteria. In this work, we show that Fusarium cerealis, Phoma herbarum and Mucor hiemalis, isolated from concrete, could produce 828.6-941.3 mg L-1 ammonium‑nitrogen in liquid media through urea hydrolysis indicating significant urease activity, and could grow in moderate (pH 8.3) or even extremely alkaline (pH 10.6) conditions. After culture in media containing 50 mM CaCl2, at least 48.8% Ca2+ was removed from solution by the selected fungi as calcite. The accumulation of Ca by the biomass was around 83.64-114.21 mg g-1. In addition, all fungi could mediate strontium carbonate formation with F. cerealis processing the highest ability for Sr removal, with ~61% added Sr being removed from solution. Scanning electron microscopy showed carbonate biominerals were encrusted on hyphae or aggregated in fungal pellets. When equivalent concentrations of Ca2+ and Sr2+ were supplemented to the media, CaCO3 with incorporated Sr formed with F. cerealis and M. hiemalis, and Sr(Sr, Ca)(CO3)2 with P. herbarum. Our results demonstrate the potential of fungi in providing carbonate coatings for concrete surfaces and simultaneous immobilization of Sr. We anticipate our work will promote further practical field research on porous cementitious materials protection by fungi and immobilization of potentially toxic metals from metal-laden ingredients, such as fly ash and granulated ground blast furnace slag.</p>