Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arshad, Muhammad

  • Google
  • 2
  • 8
  • 124

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Growth and Characterization of Carbon Nanofibers Grown on Vertically Aligned InAs Nanowires via Chemical Vapour Deposition1citations
  • 2019Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin123citations

Places of action

Chart of shared publication
Rudolf, Petra
1 / 62 shared
Cepek, Cinzia
1 / 15 shared
Sorba, Lucia
1 / 5 shared
Haq, Ihsan Ul
1 / 2 shared
Chang, Leng Chee
1 / 1 shared
Iqbal, Aneela
1 / 1 shared
Rehman, Adeela
1 / 1 shared
Abbas, Ammara
1 / 1 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Rudolf, Petra
  • Cepek, Cinzia
  • Sorba, Lucia
  • Haq, Ihsan Ul
  • Chang, Leng Chee
  • Iqbal, Aneela
  • Rehman, Adeela
  • Abbas, Ammara
OrganizationsLocationPeople

article

Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin

  • Haq, Ihsan Ul
  • Chang, Leng Chee
  • Iqbal, Aneela
  • Rehman, Adeela
  • Arshad, Muhammad
  • Abbas, Ammara
Abstract

he present study for the first time reports facile in-situ room temperature synthesis of butterfly cluster like lamellar BiOBr deposited over TiO2 nanoparticles for photocatalytic breakdown of ciprofloxacin (CIP). The butterfly cluster arrangement of BiOBr resulted in an increase in surface area from 124.6 to 160.797 m2·g−1 and subsequently increased incident light absorption by the composite photocatalyst. The XRD indicated the existence of TiO2 as spherical ≈10–15 nm diameter particles with [101] preferential growth planes of anatase phase while the lamellar BiOBr showing growth along [110] and [102] preferential planes that were also confirmed by the HR-TEM images. DRS data implicated 2.76 eV as the energy band gap of the synthesized nanocomposite while PL spectroscopic analysis predicted it to be 2.81 eV. XPS measurements examined the chemical oxidation states of the constituents among the nanocomposite samples. The lameller structure of BiOBr in 15%BiOBr/TiO2 acts as a manifold promoting both visible light (λ > 420 nm) and direct sunlight catalytic degradation of 25 mg·L−1 aqueous CIP up to 92.5% and 100%, respectively within 150 min. The rate constant values suggested that the visible light photocatalysis of CIP with 15%BiOBr/TiO2 was 5.2 and 9.4 times faster compared to pristine TiO2 and BiOBr, respectively. The free radical scavenging study demonstrated that although photogenerated superoxide ions and holes contribute to the overall photocatalytic activity, yet, hydroxyl radicals predominantly control the CIP oxidation. The synthesized nanocomposite was re-used up to five cycles and retained 82.98% efficiency even after 5th use cycle showing a decline of only 12%. The catalyst stability and easy recovery adds to its reusability and value of the photocatalytic process.

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • cluster
  • phase
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • transmission electron microscopy