People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Tfcv
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Intensifying heterogeneous TiO2 photocatalysis for bromate reduction using the NETmix photoreactor
Abstract
This work focuses on the intensification of BrO3- (200 mu g L-1) reduction by TiO2-assisted heterogeneous photocatalysis, using the NETmix mili-photoreactor illuminated by UVA light-emitting diodes (UVA-LEDs). The mili-photoreactor was assembled in two configurations: i) catalyst deposition on the channels and chambers of a back stainless steel slab (555) and ii) catalyst deposition on the front borosilicate glass slab (BGS), allowing the study of front-side (FSI) and back-side (BSI) illumination mechanisms, respectively. The BrO3- reduction rate in aqueous solution was assessed as a function of: i) pH; ii) dissolved oxygen (DO); iii) addition of formic acid (CH2O2) as a sacrificial agent (SA); iv) photocatalyst film thickness; v) illumination mechanism; vi) irradiation intensity; vii) temperature; and viii) water matrix. Higher BrO3- reduction rates were observed using the HI mechanism and lower pH values. Nitrogen injection (to eliminate DO) did not significantly improve the reaction rate and the addition of CH2O2 had a negative effect at pH 6.5. Neither temperature nor irradiance increase showed a considerable improvement on the reduction rate. Moreover, TiO2 film remains stable for at least 13 consecutive reactions without significant catalyst leaching. The chemically pre-treated fresh water (FW) matrix negatively affected the reaction rate when compared with the synthetic water (SW), under the best operational conditions (SSS: pH 5.5, 287 mg of TiO2, 25 degrees C, SA absence, [DO] 232-263 mu M). This was associated with the presence of both inorganic and organic matter at much higher concentrations than BrO3-. Notwithstanding, heterogeneous TiO2 photocatalysis, using the NETmix mili-photoreactor, was successfully applied to fresh water, achieving [BrO3-] < 10 mu g L-1 (guideline value) after 2-hour reaction.