Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wojtowicz, Piotr

  • Google
  • 1
  • 2
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland68citations

Places of action

Chart of shared publication
Ciazela, Jakub
1 / 2 shared
Siepak, Marcin
1 / 11 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ciazela, Jakub
  • Siepak, Marcin
OrganizationsLocationPeople

article

Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland

  • Ciazela, Jakub
  • Wojtowicz, Piotr
  • Siepak, Marcin
Abstract

<p>Oxbow lakes have received much attention in recent years due to their ecological importance and vulnerability for contamination. Sediment cores collected from the floor of oxbow lakes indicate the increasing contamination of lakes with heavy metals (Cu, Cd, Pb, Zn, Ni, Cr) over the last fifty years, owing to the development of transport and industry. Little is known, however, about how various factors can enhance or impede the migration of metallic contaminants between the pollution source and lake ecosystems. To untangle these complex processes, the metal distribution was studied throughout the waters and sediments of an urban zone-river-oxbow lake system in the Middle Odra Valley, Germany/Poland. As expected the degree of metal contamination is highest (> 10 enrichment) at low distance (< 1 km) from the human source of pollution. Using correlations with highly mobile in water Na<sup>+</sup> and Cl<sup>−</sup> ions, we reveal, however, that due to hydrological factors some metals (Cu, Cd, and Pb) are up to > 5 times enriched in the sediments of lakes even > 10 km distant from the nearest source of pollution. The lakes that are permanently connected with the Odra River or that are frequently flooded are most vulnerable for contamination. Although the metal concentrations are especially enriched in the smallest grain size fractions, this portion of metals seems to be less bioavailable with respect to that accumulated within the larger grain size fractions. Concentrations of metallic contaminants in the bottom sediments of the Middle Odra lakes are generally lower than in other oxbow lakes. Having untangled the variety of processes controlling metal migration in a complex river-oxbow lake system operating on these low metal concentrations, allows us to believe that our approach could become a paradigm for future trace element studies in a variety of similar lowland systems across the World.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • laser emission spectroscopy
  • trace element