Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bouguerra, S.

  • Google
  • 1
  • 7
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Impact of organic nano-vesicles in soil: The case of sodium dodecyl sulphate/didodecyl dimethylammonium bromide19citations

Places of action

Chart of shared publication
Antunes, F.
1 / 4 shared
Gavina, A.
1 / 1 shared
Lopes, I.
1 / 3 shared
Rocha Santos, T.
1 / 2 shared
Pereira, Ruth
1 / 3 shared
Rasteiro, Mg
1 / 1 shared
Marques, Cr
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Antunes, F.
  • Gavina, A.
  • Lopes, I.
  • Rocha Santos, T.
  • Pereira, Ruth
  • Rasteiro, Mg
  • Marques, Cr
OrganizationsLocationPeople

article

Impact of organic nano-vesicles in soil: The case of sodium dodecyl sulphate/didodecyl dimethylammonium bromide

  • Antunes, F.
  • Gavina, A.
  • Lopes, I.
  • Rocha Santos, T.
  • Pereira, Ruth
  • Bouguerra, S.
  • Rasteiro, Mg
  • Marques, Cr
Abstract

Aiming at contributing new insights into the effects of nanomaterials (NMs) in the terrestrial ecosystem, this study evaluated the impacts of organic nano-vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) on the emergence and growth of plant seeds, and on the avoidance and reproduction of soil invertebrates. For this purpose several ecotoxicological assays were performed with different test species (terrestrial plants: Zea mays, Avena sativa, Brassica oleracea and Lycopersicon esculentum; soil invertebrates: Eisenia andrei and Folsomia candida). A wide range of SDS/DDAB concentrations were tested, following standard protocols, and using the standard OECD soil as a test substrate (5% of organic matter). The aqueous suspensions of SDS/DDAB, used to spike the soils, were characterised by light scattering techniques for hydrodynamic size of the vesicles, aggregation index, polydispersity index, zeta potential and surface charge. The SDS/DDAB concentrations in the test soil were analysed by HPLC-UV at the end of the assays. Invertebrate species were revealed to be sensitive to nano-SDS/DDAB upon immediate exposure to freshly spiked soils. However, the degradation of SDS/DDAB nano-vesicles in the soil with time prevented the occurrence of significant reproduction effects on soil invertebrates. Plants were not particularly sensitive to SDS/DDAB, except B. oleracea (at concentrations above 375 mg kg(dw)(-1) ). The results gathered in this study allowed a preliminary determination of a risk limit to nano-SDS/DDAB. The lowtoxicity of SDS/DDAB nano-vesicles could be explained by its high and fast degradation in the soil. The soil microbial community could have an important role in the fate of this NM, thus it is of remarkable importance to improve this risk limit by taking into account specific data addressing this community.

Topics
  • impedance spectroscopy
  • surface
  • Sodium
  • polydispersity
  • High-performance liquid chromatography
  • light scattering