Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aller, A. J.

  • Google
  • 2
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Characterization of condensed phase beryllium species in the presence of aluminium and silicon matrices during electrothermal heating on graphite and tungsten platforms3citations
  • 2004Identification of condensed-phase species on the thermal transformation of alkaline and alkaline earth metal sulphates on a graphite platform10citations

Places of action

Chart of shared publication
Castro, M. A.
2 / 3 shared
Littlejohn, David
2 / 6 shared
Faulds, Karen
2 / 6 shared
Smith, W. E.
1 / 8 shared
Chart of publication period
2011
2004

Co-Authors (by relevance)

  • Castro, M. A.
  • Littlejohn, David
  • Faulds, Karen
  • Smith, W. E.
OrganizationsLocationPeople

article

Identification of condensed-phase species on the thermal transformation of alkaline and alkaline earth metal sulphates on a graphite platform

  • Castro, M. A.
  • Littlejohn, David
  • Smith, W. E.
  • Aller, A. J.
  • Faulds, Karen
Abstract

Thermal treatment of alkaline and alkaline earth metal sulphates on a graphite platform was performed over the temperature range 200–2000 °C. The solid residues produced at each temperature were located by scanning electron microscopy (SEM) and then identified by energy-dispersive (ED) X-ray spectroscopy and Raman microanalysis. Additional experiments involved the dissolution of the residues from the platform and analysis by ion chromatography to determine the concentration of sulphate and other ions. A decomposition pattern was derived for the alkaline and alkaline earth metal sulphates. The transformation of the metal sulphates was dependent on temperature and the cation present. In general, the metal sulphates do not undergo significant decomposition to other species at temperatures less than 900 °C, with the exception of magnesium and beryllium sulphates, which are transformed into metal oxides to some extent. Above 900 °C, major transformations occur mainly for sodium, magnesium, and beryllium sulphates. For all the salts studied, there is evidence of the formation of species such as metal sulphides and elemental sulphur.

Topics
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • experiment
  • Magnesium
  • Magnesium
  • laser emission spectroscopy
  • Sodium
  • decomposition
  • X-ray spectroscopy
  • ion chromatography
  • Sulphur
  • Beryllium
  • beryllium