Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dinesh, D.

  • Google
  • 1
  • 8
  • 149

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities.149citations

Places of action

Chart of shared publication
Suresh, G.
1 / 6 shared
Kokila, D.
1 / 1 shared
Ph, Gunasekar
1 / 1 shared
Koodalingam, Arunagirinathan
1 / 2 shared
Vijaiyan Siva, G.
1 / 1 shared
Prabhu, D.
1 / 5 shared
Ramesh, B.
1 / 4 shared
Ravichandran, N.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Suresh, G.
  • Kokila, D.
  • Ph, Gunasekar
  • Koodalingam, Arunagirinathan
  • Vijaiyan Siva, G.
  • Prabhu, D.
  • Ramesh, B.
  • Ravichandran, N.
OrganizationsLocationPeople

article

Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities.

  • Suresh, G.
  • Kokila, D.
  • Ph, Gunasekar
  • Koodalingam, Arunagirinathan
  • Vijaiyan Siva, G.
  • Prabhu, D.
  • Dinesh, D.
  • Ramesh, B.
  • Ravichandran, N.
Abstract

Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag(+) ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was⩽85nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6ppm.

Topics
  • nanoparticle
  • silver
  • x-ray diffraction
  • Fourier transform infrared spectroscopy
  • Ultraviolet–visible spectroscopy