People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scholz, Ricardo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2014Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africacitations
- 2014Infrared and raman spectroscopic characterization of the borate mineral vonsenite Fe2/2+ Fe3+BO5citations
- 2014A vibrational spectroscopic study of the phosphate mineral churchite (REE)(PO4).2H2Ocitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral kulanite Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3citations
- 2013Vibrational spectroscopic characterization of the phosphate mineral series eosphorite-childrenite-(Mn,Fe)Al(PO4)(OH)2.(H2O)citations
- 2013The phosphate mineral arrojadite-(KFe) and its spectroscopic characterizationcitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite - Zn2Fe(PO4)2.4H2O, from Hagendorf Sud, Germany and in comparison with other zinc phosphatescitations
- 2012Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral - implications for mineral collectorscitations
Places of action
Organizations | Location | People |
---|
article
Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral - implications for mineral collectors
Abstract
The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.