Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Belusko, Martin

  • Google
  • 3
  • 8
  • 822

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Chemical degradation in Thermally Cycled Stainless Steel 316 with High-Temperature Phase Change Material6citations
  • 2018Investigation into the behaviour of aluminium and steel under melt/freeze cyclic conditions11citations
  • 2016Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies805citations

Places of action

Chart of shared publication
Bruno, Frank
2 / 5 shared
Liu, Ming
3 / 17 shared
Rumman, Raihan
1 / 6 shared
Chambers, Benjamin A.
1 / 1 shared
Jacob, Rhys
3 / 3 shared
Sibley, Alexander
1 / 1 shared
Saman, Wasim
1 / 3 shared
Tay, N. H. Steven
1 / 3 shared
Chart of publication period
2021
2018
2016

Co-Authors (by relevance)

  • Bruno, Frank
  • Liu, Ming
  • Rumman, Raihan
  • Chambers, Benjamin A.
  • Jacob, Rhys
  • Sibley, Alexander
  • Saman, Wasim
  • Tay, N. H. Steven
OrganizationsLocationPeople

article

Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies

  • Bruno, Frank
  • Liu, Ming
  • Belusko, Martin
  • Saman, Wasim
  • Tay, N. H. Steven
  • Jacob, Rhys
Abstract

A concentrating solar power (CSP) system converts sunlight into a heat source which can be used to drive a conventional power plant. Thermal energy storage (TES) improves the dispatchability of a CSP plant. Heat can be stored in either sensible, latent or thermochemical storage. Commercial deployment of CSP systems have been achieved in recent years with the two-tank sensible storage system using molten salt as the storage medium. Considerable research effort has been conducted to improve the efficiency of the CSP system and make the cost of electricity comparable to that of the conventional fossil-fuel power plant. This paper provides a comprehensive summary of CSP plants both in operation and under construction. It covers the available technologies for the receiver, thermal storage, power block and heat transfer fluid. This paper also reviews developments in high temperature TES over the past decade with a focus on sensible and latent heat storage. High temperature corrosion and economic aspects of these systems are also discussed.

Topics
  • high temperature corrosion
  • concentrating