People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Furmański, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020On the anisotropy of thermal conductivity in ceramic brickscitations
- 2020Micro-macro heat conduction model for the prediction of local, transient temperature in composite mediacitations
- 2018Investigations on thermal anisotropy of ceramic bricks
- 2015Unconventional experimental technologies used fo phase change materials (PCM) characterization. Part 2 – morphological and structural characterization, physico-chemical stability and mechanical propertiescitations
- 2015Front tracking method in modeling transport phenomena accompanying liquid–solid phase transition in binary alloys and semitransparent mediacitations
- 2015Micro-macro model for prediction of local temperature and concentration distribution in two-phase media
- 2014Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media
- 2004Microscopic-macroscopic Modeling of Transport Phenomena During Solidification in Heterogeneous Systems
Places of action
Organizations | Location | People |
---|
article
Unconventional experimental technologies used fo phase change materials (PCM) characterization. Part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties
Abstract
Due to the high interest of appropriate characterization of PCM and hybrid PCM composites, different research centres and universities are using several material characterization techniques not commonly used with PCM, to study the structure and morphology of these materials. Likewise, physico-chemical stability is a crucial parameter for the performance of latent storage materials during time and its evaluation has been done by using molecular spectroscopy, chemiluminiscence or calorimetric tests. Atomic force microscopy and nanoindentation are also reported to characterize hybrid PCM composites. Other chemical aspects studied are related with the compatibility of the PCM and its container and also considered in this compilation of characterization work.