Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhuiyan, A. H.

  • Google
  • 5
  • 7
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Understanding the enhancement of the optical and electronic attributes of iodine-doped vacuum deposited tetramethylaniline (PPTMA) thin film coatings9citations
  • 2020Heat treatment effect on the structural, morphological, and optical properties of plasma polymerized furan-2-carbaldehyde thin films10citations
  • 2017Structural, morphological, compositional and optical studies of plasma polymerized 2-furaldehyde amorphous thin films24citations
  • 2016Understanding the charge carrier conduction mechanisms of plasma-polymerized 2-furaldehyde thin films via DC electrical studies15citations
  • 2009Effect of salinity on dynamic dielectric properties of Sundori wood of Bangladeshcitations

Places of action

Chart of shared publication
Kabir, H.
3 / 12 shared
Akther, H.
1 / 1 shared
Nasrin, R.
2 / 2 shared
Kabir, Hu.
1 / 1 shared
Uddin, K. M.
1 / 1 shared
Sikder, S. S.
1 / 6 shared
Uddin, K. A.
1 / 1 shared
Chart of publication period
2021
2020
2017
2016
2009

Co-Authors (by relevance)

  • Kabir, H.
  • Akther, H.
  • Nasrin, R.
  • Kabir, Hu.
  • Uddin, K. M.
  • Sikder, S. S.
  • Uddin, K. A.
OrganizationsLocationPeople

article

Heat treatment effect on the structural, morphological, and optical properties of plasma polymerized furan-2-carbaldehyde thin films

  • Bhuiyan, A. H.
  • Kabir, H.
  • Nasrin, R.
Abstract

The furan-2-carbaldehyde (PPFCD) amorphous polymer thin films, with several thicknesses, were deposited onto glass substrates using a glow discharge of monomer FCD at ordinary room temperature via plasma polymerization technique. The structural, morphological, and optical characteristics of the as synthesised PPFCD amorphous films were studied as a function of temperature via X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and ultraviolet-visible (UV–Vis) absorption spectroscopy. The amorphous nature of the thin films was ascertained in both as-synthesised and heat treated states using the XRD studies. The SEM micrographs display homogeneous and fracture free surface of PPFCD films and no remarkable variation in the surface morphology of the as synthesised films was detected owing to the heat treatment procedure. However, the EDX, and FTIR analysis represented some structural rearrangement originated from the heat treatment of the PPFCD thin films. The analysis of the UV–Vis absorption spectroscopy revealed that the absorbance of the films depend on the films thickness and the temperature of the heat treatment. The optical band-gaps of PPFCD amorphous films were found to be significantly decreased with the gradual rise in heat treatment temperature.

Topics
  • surface
  • polymer
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • glass
  • glass
  • Energy-dispersive X-ray spectroscopy