Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lett, J. Anita

  • Google
  • 1
  • 5
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Tailoring the structural, morphological, optical, thermal and dielectric characteristics of ZnO nanoparticles using starch as a capping agent37citations

Places of action

Chart of shared publication
Hamizi, Nor Aliya Binti
1 / 1 shared
Johan, Mohd. Rafie
1 / 1 shared
Vennila, S.
1 / 1 shared
Sagadevan, Suresh
1 / 8 shared
Marlinda, A. R.
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Hamizi, Nor Aliya Binti
  • Johan, Mohd. Rafie
  • Vennila, S.
  • Sagadevan, Suresh
  • Marlinda, A. R.
OrganizationsLocationPeople

article

Tailoring the structural, morphological, optical, thermal and dielectric characteristics of ZnO nanoparticles using starch as a capping agent

  • Hamizi, Nor Aliya Binti
  • Johan, Mohd. Rafie
  • Lett, J. Anita
  • Vennila, S.
  • Sagadevan, Suresh
  • Marlinda, A. R.
Abstract

Using Starch as a capping agent, zinc oxide (ZnO) nanoparticles (NPs) have been synthesized by the low cost and simple chemical precipitation technique. The confirmation of the hexagonal crystal structure of ZnO NPs were demonstrated by X-ray powder diffraction (XRD) pattern. The Fourier-transform infrared spectroscopy (FTIR) spectroscopy confirms Zn-O stretching vibrations. The scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images reveal the surface morphological properties of ZnO NPs. Optical properties were investigated by UV–Visible spectroscopy. The optical characterization shows that the ZnO NPs exhibits a low absorbance in the visible range. Thermal behavior of ZnO NPs studied using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Dielectric properties of ZnO NPs are analysed in the different frequencies at different temperatures. The dielectric properties of ZnO NPs were attributed to the interfacial polarization at low frequencies and orientational polarization at higher frequencies. Therefore, the synthesis method has potential for application in manufacturing units due to ease processing and more economical reagents. Keywords: ZnO, Nanoparticles, Optical, Thermal, Dielectric studies

Topics
  • nanoparticle
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • zinc
  • transmission electron microscopy
  • thermogravimetry
  • precipitation
  • differential thermal analysis
  • infrared spectroscopy