People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bouzidi, Youcef
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Potential recovery of glass and carbon fibers from wind turbine blades through different valorization techniquescitations
- 2022Comparative study between different valorization methods of glass fiber waste from end-of-life wind turbine bladescitations
- 2019Waste and material flow analysis in the end-of-life wind energy systemcitations
- 2010LCA allocation procedure used as an incitative method for waste recycling : An application to mineral additions in concretecitations
Places of action
Organizations | Location | People |
---|
article
Waste and material flow analysis in the end-of-life wind energy system
Abstract
<p>In the specific case of French onshore wind farms, waste management of these systems has become an important factor of the wind energy industry's sustainability. The aim of this paper is to quantify wind turbine (WT) material wastes and flows across the Champagne-Ardenne (CA) region from 2002 to 2020. To do so, a material flow analysis (MFA) model was used. It included three maintenance strategies used for onshore wind turbines. Results show that more than 1 million tons of material will ultimately be generated at the EoL of CA wind farms. The main EoL materials are ferrous and non-ferrous metals, polymers, glass and concrete. The main EoL materials are ferrous and non-ferrous metals, polymers, glass and concrete. In this total, blades and composite EoL materials that need to be managed, account for more than 27,000 tons; there are 523,227 tons of steel and iron materials that need to be handled; 6617 tons of copper, and 28,179 tons of aluminum flows. Landfill concrete accounts for 734,230 tons. When the concrete in foundation is not considered, 73% of an average wind turbine can be recycled. With the first generation of WT reaching their EoL phase and taking into account that no dismantling or recycling facilities of WT components have emerged in the French territory, the potential of WT wastes available for treatment (recycle, incinerate, landfill etc.) is still increasing.</p>