People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wood, Joseph
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Anisole hydrodeoxygenation over nickel-based catalystscitations
- 20213D printed re-entrant cavity resonator for complex permittivity measurement of crude oilscitations
- 2020Mild-temperature hydrodeoxygenation of vanillin a typical bio-oil model compound to creosol a potential future biofuelcitations
- 2020Maximizing paraffin to olefin ratio employing simulated nitrogen-rich syngas via Fischer-Tropsch process over Co3O4/SiO2 catalystscitations
- 2020Tetralin and decalin h-donor effect on catalytic upgrading of heavy oil inductively heated with steel ballscitations
- 2020Organocatalysis for versatile polymer degradationcitations
- 2019Poly(lactic acid) degradation into methyl lactate catalyzed by a well-defined Zn(II) complexcitations
- 2019Reaction kinetics of vanillin hydrodeoxygenation in acidic and nonacidic environments using bimetallic PdRh/Al2O3 catalystcitations
- 2019A mechanistic study of Layered-Double Hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formationcitations
- 2018Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reformingcitations
- 2017In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteriacitations
- 2016Selective hydrogenation using palladium bioinorganic catalystcitations
- 2011Improving the interpretation of mercury porosimetry data using computerised X-ray tomography and mean-field DFTcitations
- 2008Experimental and modelling studies of the kinetics of mercury retraction from highly confined geometries during porosimetry in the transport and the quasi-equilibrium regimescitations
- 2006Studies of the entrapment of non-wetting fluid within nanoporous media using a synergistic combination of MRI and micro-computed X-ray tomographycitations
- 2005Minimisation and recycling of spent acid wastes from galvanising plantscitations
Places of action
Organizations | Location | People |
---|
article
Minimisation and recycling of spent acid wastes from galvanising plants
Abstract
The galvanizing process introduces environmental stresses from solid, liquid and air-borne emissions. Spent pickling acid represents the largest mass of such waste production, but its major constituent, iron chloride, could be used in the wastewater treatment industry to remove phosphate. A survey of the operational procedures adopted and the acid wastes produced by UK Galvanizers are reported. Various methods to produce spent acid of suitable composition have been investigated but elimination of zinc contamination of the acid was considered to be the only feasible method. Careful acid management is necessary to maintain low zinc levels, whilst substitution of titanium for mild steel jigs not only assists in reducing zinc in spent acid but also produces considerable savings in zinc carry-over on the jig. Application of the Kleingarn acid management system reduces waste volume, saves hydrochloric acid (HCl) and increases component throughput whilst, in conjunction with zinc elimination, could allow recycling of the majority of galvanizer's acid wastes. © 2004 Elsevier B.V. All rights reserved.