People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raza, Rizwan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam supportcitations
- 2022Influence of Sintering Temperature on the Structural, Morphological, and Electrochemical Properties of NiO-YSZ Anode Synthesized by the Autocombustion Routecitations
- 2021Studies of electrical and optical properties of cadmium‐doped zinc oxide for energy conversion devicescitations
- 2021Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructurecitations
- 2021Electrochemical Investigations of BaCe0.7-xSmxZr0.2Y0.1O3-δ Sintered at a Low Sintering Temperature as a Perovskite Electrolyte for IT-SOFCscitations
- 2021Evaluation of BaCo0.Fe-4(0).4Zr0.2-xNixO3-delta perovskite cathode using nickel as a sintering aid for IT-SOFCcitations
- 2020Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell : A comprehensive reviewcitations
- 2019Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cellscitations
- 2018Electrochemical and thermal characterization of doped ceria electrolyte with lanthanum and zirconiumcitations
- 2018In Vitro Cytotoxicity and Morphological Assessments of GO-ZnO against the MCF-7 Cells: Determination of Singlet Oxygen by Chemical Trappingcitations
- 2015Significance enhancement in the conductivity of core shell nanocomposite electrolytes
- 2015Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cellscitations
- 2013A new energy conversion technology based on nano-redox and nano-device processescitations
- 2011Functional nanocomposites for advanced fuel cell technology and polygeneration
Places of action
Organizations | Location | People |
---|
article
Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam support
Abstract
<p>Considerable efforts have been made in the past several decades to search the cheap metal-oxides electrocatalysts with superior electrical properties including ionic and electronic for electrochemical energy devices. In this work, simple orthorhombic structured CaFe<sub>2</sub>O<sub>4</sub> nano-particles were embedded on a porous Ni-foam by spin coating method for the application of air electrode for protonic ceramic fuel cells (PCFCs), which provides high oxygen reduction activity than using traditional processes. CaFe<sub>2</sub>O<sub>4</sub> coated Ni-foam cathode shows very small area-specific-resistance (ASR) of ≤0.2 Ωcm<sup>2</sup>and fuel cell device assembled by CaFe<sub>2</sub>O<sub>4</sub> coated Ni-foam cathode over ceramic BaZr<sub>0</sub>.<sub>8</sub>Y<sub>0</sub>.<sub>2</sub>O<sub>3</sub> (BZY) electrolyte exhibited a peak power density (PPD) of 612 mW cm<sup>−2</sup> when operating at 500°C. The porous Ni-foam support superficially improves the electrical and gas diffusion capabilities along with ionic transport properties of CaFe<sub>2</sub>O<sub>4</sub> by narrowing the bandgap to effectively facilitating small polaron hopping energy of valence electrons. However, various spectroscopic measurements such as electrochemical impedance, X-ray photoelectron, thermogravimetric analysis, and Density Functional Theory (DFT) calculations were employed to understand the improved ORR electrocatalyst function of CaFe<sub>2</sub>O<sub>4</sub> with Ni-foam support as three-dimensional heterostructure composite cathode. The results can further help to develop functional cobalt-free electro-catalysts for low temperature-PCFCs and other related applications.</p>