People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgugan, Malcolm
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Understanding Fatigue Delamination Crack Growth in a Wind Turbine Rotor Blade Through an Element Testing
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2016Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structurescitations
- 2015Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validationcitations
- 2015Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials
- 2015Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detectioncitations
- 2015Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materialscitations
- 2015Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation
- 2015Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor
- 2013Bondlines – Online blade measurements (October 2012 and January 2013)
- 2011Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Fundamentals for remote condition monitoring of offshore wind turbines
- 2008Full Scale Test of a SSP 34m boxgirder 2
- 2006Detecting and identifying damage in sandwich polymer composite by using acoustic emission
Places of action
Organizations | Location | People |
---|
article
Impact fatigue damage of coated glass fibre reinforced polymer laminate
Abstract
Impact fatigue caused by rain droplets, also called rain erosion, is a severe problem for wind turbine blades and aircraft. In this work, an assessment of impact fatigue on a glass fibre reinforced polymer laminate with a gelcoat is presented and the damage mechanisms are investigated. A single point impact fatigue tester is developed to generate impact fatigue damage and SN data. Rubber balls are repeatedly impacted on a single location of the coated laminate. Each impact induces transient stresses in the coated laminate. After repeated impacts, these stresses generate cracks, leading to the removal of the coating and damage to the laminate. High-resolution digital imaging is used to determine the incubation time until the onset of coating damage, and generate an SN curve. An acoustic emission sensor placed at the back of the laminate monitors changes in acoustic response as damage develops in the coated laminate. The subsurface cracks are studied and mapped by 3D X-ray computed tomography. A finite element method model of the impact shows the impact stresses in the coating and the laminate. The stresses seen in the model are compared to cracks found by 3D tomography. The damage is also evaluated by ultrasonic scanning.