People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Selcuk, Cem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2016Inspection and Structural Health Monitoring techniques for Concentrated Solar Power plantscitations
- 2015Developing a Novel Ice Protection System for Wind Turbine Blades Using Vibrations of Both Short and Long Wavelengthscitations
- 2014Development of an ultrasonic NDT system for automated in-situ inspection of wind turbine blades
- 2014Enable the powder metallurgy process to expand to new markets with more reliable parts and lower manufacturing costs through the inspection of green parts
- 2014Development of an automated digital radiography system for the non-destructive inspection of green powder metallurgy parts
- 2013PM parts fast in-line x-ray digital radiography
- 2012Preliminary NDT investigation of sintered Powder Metallurgy parts by high-resolution TDI based X-ray digital radiography
- 2012Development of a digital radiographic inspection technique for production friendly quality assessment of powder metallurgy parts
Places of action
Organizations | Location | People |
---|
article
Inspection and Structural Health Monitoring techniques for Concentrated Solar Power plants
Abstract
<p>Parabolic trough concentrators are the most widely deployed type of solar thermal power plant. The majority of parabolic trough plants operate up to 400 °C. However, recent technological advances involving molten salts instead of oil as working fluid the maximum operating temperature can exceed 550 °C. CSP plants face several technical problems related to the structural integrity and inspection of critical components such as the solar receivers and insulated piping of the coolant system. The inspection of the absorber tube is very difficult as it is covered by a cermet coating and placed inside a glass envelope under vacuum. Volumetric solar receivers are used in solar tower designs enabling increased operational temperature and plant efficiency. However, volumetric solar receiver designs inherently pose a challenging inspection problem for maintenance engineers due to their very complex geometry and characteristics of the materials employed in their manufacturing. In addition, the rest of the coolant system is insulated to minimise heat losses and therefore it cannot be inspected unless the insulation has been removed beforehand. This paper discusses the non-destructive evaluation techniques that can be employed to inspect solar receivers and insulated pipes as well as relevant research and development work in this field.</p>