Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bae, Dowon

  • Google
  • 7
  • 23
  • 391

Loughborough University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Two-dimensional metal carbides for electro- and photocatalytic CO2 reduction: Review33citations
  • 2020A Comparative Study of (Cd,Zn)S Buffer Layers for Cu(In,Ga)Se2 Solar Panels Fabricated by Chemical Bath and Surface Deposition Methods5citations
  • 2015Crystalline TiO 2 : A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes95citations
  • 2015Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes95citations
  • 2014Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes97citations
  • 2013Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells39citations
  • 2012Fabrication of Cu2ZnSnS4 thin film solar cell using single step electrodeposition method27citations

Places of action

Chart of shared publication
In, Su-Il
1 / 1 shared
Hiragond, Chaitanya B.
1 / 1 shared
Powar, Niket S.
1 / 1 shared
Malacrida, Paolo
3 / 16 shared
Hansen, Ole
3 / 83 shared
Frydendal, Rasmus
3 / 6 shared
Pedersen, Thomas
3 / 10 shared
Mei, Bastian Timo
3 / 5 shared
Chorkendorff, Ib
3 / 97 shared
Vesborg, Peter Christian Kjærgaard
3 / 16 shared
Seger, Brian
3 / 16 shared
Stephens, Ifan Erfyl Lester
1 / 10 shared
Permyakova, Anastasia Aleksandrovna
1 / 1 shared
Kim, Woo Kyoung
1 / 3 shared
Kwon, Sehan
1 / 1 shared
Park, Hyeonwook
1 / 3 shared
Oh, Joonjae
1 / 1 shared
Pawar, Sambhaji M.
1 / 3 shared
Gurav, Kishor V.
1 / 1 shared
Pawar, Bharati S.
1 / 2 shared
Kwon, Se Han
1 / 1 shared
Kim, Jin Hyeok
1 / 1 shared
Kolekar, Sanjay S.
1 / 1 shared
Chart of publication period
2022
2020
2015
2014
2013
2012

Co-Authors (by relevance)

  • In, Su-Il
  • Hiragond, Chaitanya B.
  • Powar, Niket S.
  • Malacrida, Paolo
  • Hansen, Ole
  • Frydendal, Rasmus
  • Pedersen, Thomas
  • Mei, Bastian Timo
  • Chorkendorff, Ib
  • Vesborg, Peter Christian Kjærgaard
  • Seger, Brian
  • Stephens, Ifan Erfyl Lester
  • Permyakova, Anastasia Aleksandrovna
  • Kim, Woo Kyoung
  • Kwon, Sehan
  • Park, Hyeonwook
  • Oh, Joonjae
  • Pawar, Sambhaji M.
  • Gurav, Kishor V.
  • Pawar, Bharati S.
  • Kwon, Se Han
  • Kim, Jin Hyeok
  • Kolekar, Sanjay S.
OrganizationsLocationPeople

article

Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells

  • Kim, Woo Kyoung
  • Kwon, Sehan
  • Park, Hyeonwook
  • Bae, Dowon
  • Oh, Joonjae
Abstract

<p>The use of Al<sub>2</sub>O<sub>3</sub> fabricated by atomic layer deposition (ALD) as a metal diffusion barrier between the stainless steel substrate and the back contact layer in flexible Cu(In,Ga)Se<sub>2</sub> (CIGS) photovoltaic (PV) devices was found to reduce metal ion diffusion from the substrate and reduce the number of defects at the CIGS absorber layer, as determined from the secondary ion mass spectrometry (SIMS) depth profile and quantitative defect analysis using C-V measurements. Cells with Al<sub>2</sub>O<sub>3</sub> barrier layers were found to show higher efficiency and uniformity compared to cells with ZnO barrier layers. XRD pattern analysis showed the Al<sub>2</sub>O<sub>3</sub> barrier layer's amorphous characteristic which can form a complex diffusion path. In addition, quantum efficiency (QE) analysis of the cells showed that the main advantage of using an Al<sub>2</sub>O<sub>3</sub> barrier layer is derived from the increase in the current density due to the decrease in the number of recombination sites resulting from the decrease in the number of defects due to the amorphous nature of the layer. Therefore, cells with an Al<sub>2</sub>O<sub>3</sub> barrier layer fabricated by ALD showed better average conversion efficiency and uniformity (11.23 ± 1.86%) compared to cells with a ZnO barrier layer fabricated by sputtering. Ongoing advancements in ALD processes make the use of Al<sub>2</sub>O<sub>3</sub> barrier layers promising for obtaining large-scale flexible solar cells.</p>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • stainless steel
  • x-ray diffraction
  • defect
  • current density
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry
  • atomic layer deposition