People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ruggeri, G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Synthesis and solution properties of poly(p,α dimethylstyrene-co-maleic anhydride)citations
- 2022Synthesis and solution properties of poly(p,α dimethylstyrene-co-maleic anhydride):The use of a monomer potentially obtained from renewable sources as a substitute of styrene in amphiphilic copolymerscitations
- 2020Luminescent solar concentrators from waterborne polymer coatingscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and solution properties of poly(p,α dimethylstyrene-co-maleic anhydride)
Abstract
<p>The use of p,α-dimethylstyrene, potentially obtainable from renewable sources, as a substitute for styrene in the synthesis of amphiphilic copolymers is reported in this work. A series of novel poly(p,α-dimethylstyrene-co-maleic anhydride) (SMA) copolymers was synthesized, characterized, and studied as potential polymeric surfactants. After hydrolysis, the copolymers solution properties were compared to the similar and very well-known styrene-maleic acid copolymers. Both series of copolymers were synthesized using reversible addition-fragmentation chain transfer-mediated polymerization (RAFT), and a sample of poly(p,α-dimethylstyrene-co-maleic anhydride) was synthesized via classical free radical polymerization. The synthesized copolymers were studied from the point of view of their solution properties, with particular attention to the influence of the macromolecular and chemical structure on the surface tension of their aqueous solutions. Our results suggest that p,α-dimethylstyrene can be employed in copolymers with maleic anhydride, the resulting material being a valid alternative to SMA copolymers for various applications, such as emulsifiers and dispersants. Furthermore, the DMSMA series seems to be slightly more surface active than SMA.</p>