People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ottevaere, Heidi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Freeform beam shaping optics for large-size 3D scaffold fabrication with high accuracy
- 2022Fabrication of large-scale scaffolds with microscale features using light sheet stereolithographycitations
- 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatmentcitations
- 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC systemcitations
- 2018Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterizationcitations
- 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperaturescitations
- 2016Determination of the radial profile of the photoelastic coefficient of polymer optical fibers
- 2016Optofluidic multi-measurement system for the online monitoring of lubricant oilcitations
- 2016Chapter 21 – Biodegradable polyesters: from monomer to application
- 2015Algorithms for determining the radial profile of the photoelastic coefficient in glass and polymer optical fibrescitations
- 2014On a possible method to measure the radial profile of the photoelastic constant in step-index optical fiber
- 2013Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibres
- 2012Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensor
- 2008Functional polymer materials for optical applications
- 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules
- 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
Places of action
Organizations | Location | People |
---|
article
Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures
Abstract
Environmentally degradable polyesters offer an interesting perspective for a vast number of applications. However, current front-runners like poly(lactide), poly(glycolide) and poly(e-caprolactone) are either semi crystalline excluding applications for which optical transparency is desired, or exhibit low glass transition temperatures (T-s) resulting in poor dimensional stability at temperatures exceeding the T-g. In the present work, copolymers of lactide and mandelide are explored as a method to obtain amorphous, environmentally degradable polyesters with a glass transition temperature exceeding 50 degrees C. Mandelide and lactide can be successfully copolymerised and the resulting copolymers revealed rising T-g values upon increasing the mandelide content. The obtained molecular weights were superior to the molecular weights previously obtained via poly condensation, but were limited by the epimerisation of the mandelide monomer, which passes through an enolic intermediate that is able to initiate the polymerisation.