Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ottevaere, Heidi

  • Google
  • 16
  • 53
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2023Freeform beam shaping optics for large-size 3D scaffold fabrication with high accuracycitations
  • 2022Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography12citations
  • 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatment15citations
  • 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system7citations
  • 2018Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization37citations
  • 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures8citations
  • 2016Determination of the radial profile of the photoelastic coefficient of polymer optical fiberscitations
  • 2016Optofluidic multi-measurement system for the online monitoring of lubricant oil1citations
  • 2016Chapter 21 – Biodegradable polyesters: from monomer to applicationcitations
  • 2015Algorithms for determining the radial profile of the photoelastic coefficient in glass and polymer optical fibres6citations
  • 2014On a possible method to measure the radial profile of the photoelastic constant in step-index optical fibercitations
  • 2013Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibrescitations
  • 2012Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensorcitations
  • 2008Functional polymer materials for optical applicationscitations
  • 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modulescitations
  • 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modulescitations

Places of action

Chart of shared publication
Nie, Yunfeng
2 / 2 shared
Madrid Sánchez, Alejandro
2 / 2 shared
Duerr, Fabian
2 / 2 shared
Thienpont, Hugo
13 / 83 shared
Nabizadeh, Mohaddese
1 / 5 shared
Goderis, Steven
1 / 3 shared
Terryn, Herman
2 / 124 shared
Boissy, Clement
1 / 1 shared
Baert, Kitty
1 / 23 shared
Hauffman, Tom
1 / 59 shared
Hara, Takeshi
1 / 1 shared
Futagami, Shunta
1 / 1 shared
Baron, Gino
1 / 12 shared
Desmet, Gert
1 / 12 shared
Malsche, Wim De
2 / 4 shared
Van Hemelrijck, Danny
1 / 126 shared
Dubruel, Peter
3 / 31 shared
Pelsmaeker, Jens De
1 / 1 shared
Van Vlierberghe, Sandra
3 / 27 shared
Graulus, Geert-Jan
3 / 6 shared
Van Hecke, Kristof
1 / 19 shared
Van Herck, Niels
1 / 1 shared
Devreese, Bart
1 / 1 shared
Van Driessche, Gonzalez
1 / 1 shared
Merken, P.
4 / 4 shared
Acheroy, S.
4 / 5 shared
Geernaert, Thomas
5 / 37 shared
Berghmans, Francis
4 / 45 shared
Mignani, A. G.
1 / 1 shared
Van Erps, Jurgen
3 / 21 shared
Vervaeke, Michael
3 / 7 shared
Callewaert, Manly Nestor
1 / 1 shared
Verschooten, Tom
1 / 1 shared
Ciacherri, L.
1 / 1 shared
Billiet, Thomas
1 / 1 shared
Mégret, Patrice
1 / 13 shared
Chah, Karima
1 / 10 shared
Tabak, Marc
1 / 1 shared
Nasilowski, Tomasz
1 / 11 shared
Volder, M. De
1 / 1 shared
Reynaerts, D.
1 / 2 shared
Daele, P. Van
1 / 5 shared
Steenberge, G. Van
1 / 5 shared
Dubruel, P.
1 / 8 shared
Schacht, E.
1 / 5 shared
Gijseghem, T. Van
1 / 1 shared
Hermanne, Alex
2 / 2 shared
Onate, Virginia Gomez
2 / 2 shared
Debaes, Christof
2 / 8 shared
Vynck, Pedro
2 / 2 shared
Overmeire, Sara Van
2 / 2 shared
Desmet, Lieven
2 / 2 shared
Krajewski, Rafal
1 / 2 shared
Chart of publication period
2023
2022
2021
2019
2018
2016
2015
2014
2013
2012
2008
2007

Co-Authors (by relevance)

  • Nie, Yunfeng
  • Madrid Sánchez, Alejandro
  • Duerr, Fabian
  • Thienpont, Hugo
  • Nabizadeh, Mohaddese
  • Goderis, Steven
  • Terryn, Herman
  • Boissy, Clement
  • Baert, Kitty
  • Hauffman, Tom
  • Hara, Takeshi
  • Futagami, Shunta
  • Baron, Gino
  • Desmet, Gert
  • Malsche, Wim De
  • Van Hemelrijck, Danny
  • Dubruel, Peter
  • Pelsmaeker, Jens De
  • Van Vlierberghe, Sandra
  • Graulus, Geert-Jan
  • Van Hecke, Kristof
  • Van Herck, Niels
  • Devreese, Bart
  • Van Driessche, Gonzalez
  • Merken, P.
  • Acheroy, S.
  • Geernaert, Thomas
  • Berghmans, Francis
  • Mignani, A. G.
  • Van Erps, Jurgen
  • Vervaeke, Michael
  • Callewaert, Manly Nestor
  • Verschooten, Tom
  • Ciacherri, L.
  • Billiet, Thomas
  • Mégret, Patrice
  • Chah, Karima
  • Tabak, Marc
  • Nasilowski, Tomasz
  • Volder, M. De
  • Reynaerts, D.
  • Daele, P. Van
  • Steenberge, G. Van
  • Dubruel, P.
  • Schacht, E.
  • Gijseghem, T. Van
  • Hermanne, Alex
  • Onate, Virginia Gomez
  • Debaes, Christof
  • Vynck, Pedro
  • Overmeire, Sara Van
  • Desmet, Lieven
  • Krajewski, Rafal
OrganizationsLocationPeople

article

Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures

  • Van Hecke, Kristof
  • Ottevaere, Heidi
  • Thienpont, Hugo
  • Dubruel, Peter
  • Van Vlierberghe, Sandra
  • Van Herck, Niels
  • Graulus, Geert-Jan
  • Devreese, Bart
  • Van Driessche, Gonzalez
Abstract

Environmentally degradable polyesters offer an interesting perspective for a vast number of applications. However, current front-runners like poly(lactide), poly(glycolide) and poly(e-caprolactone) are either semi crystalline excluding applications for which optical transparency is desired, or exhibit low glass transition temperatures (T-s) resulting in poor dimensional stability at temperatures exceeding the T-g. In the present work, copolymers of lactide and mandelide are explored as a method to obtain amorphous, environmentally degradable polyesters with a glass transition temperature exceeding 50 degrees C. Mandelide and lactide can be successfully copolymerised and the resulting copolymers revealed rising T-g values upon increasing the mandelide content. The obtained molecular weights were superior to the molecular weights previously obtained via poly condensation, but were limited by the epimerisation of the mandelide monomer, which passes through an enolic intermediate that is able to initiate the polymerisation.

Topics
  • impedance spectroscopy
  • amorphous
  • glass
  • glass
  • glass transition temperature
  • molecular weight
  • copolymer