Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duffy, Alan R.

  • Google
  • 3
  • 6
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Metal and Oxide Sublimation from Lunar Regolith: A Kinetics Study6citations
  • 2022Thermophysical property evolution during molten regolith electrolysis7citations
  • 2021Thermodynamic modelling of ultra-high vacuum thermal decomposition for lunar resource processing24citations

Places of action

Chart of shared publication
Humbert, Matthew S.
2 / 2 shared
Brooks, Geoffrey A.
3 / 6 shared
Shaw, Matthew G.
2 / 2 shared
Pownceby, Mark I.
2 / 2 shared
Rhamdhani, M. Akbar
3 / 5 shared
Hargrave, Chad
1 / 5 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Humbert, Matthew S.
  • Brooks, Geoffrey A.
  • Shaw, Matthew G.
  • Pownceby, Mark I.
  • Rhamdhani, M. Akbar
  • Hargrave, Chad
OrganizationsLocationPeople

article

Thermodynamic modelling of ultra-high vacuum thermal decomposition for lunar resource processing

  • Brooks, Geoffrey A.
  • Shaw, Matthew G.
  • Duffy, Alan R.
  • Pownceby, Mark I.
  • Rhamdhani, M. Akbar
Abstract

This study presents a theoretical pathway to the production of sodium and potassium metal from lunar regolith at ambient lunar conditions via the selective thermal decomposition of oxides in the regolith using concentrated solar energy. The proposed process for the recovery of the products is systematically evaluated via thermodynamic modelling based on Gibbs energy minimalization using the FactSage software package. Initial modelling predicts that at ambient lunar pressures (10<SUP>-15</SUP> atm), and assuming equilibrium conditions, a thermal decomposition process run at 800 °C, followed by a fractional deposition sequence with stage temperatures of 550 °C and -50 °C can result in the concentration of FeO in the first deposition and Na and K metal in the second deposition. These results support the feasibility of a thermal decomposition process for the beneficiation and reduction of mineral resources on the lunar surface....

Topics
  • Deposition
  • impedance spectroscopy
  • mineral
  • surface
  • Sodium
  • Potassium
  • thermal decomposition